IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v190y2024ics0191261524002066.html
   My bibliography  Save this article

Freelance drivers with a decline choice: Dispatch menus in on-demand mobility services for assortment optimization

Author

Listed:
  • Yang, Yue
  • Umboh, Seeun William
  • Ramezani, Mohsen

Abstract

With the prosperity of sharing economy, more part-time and freelance suppliers (i.e., drivers) join on-demand mobility services. Because of suppliers’ autonomy and behavioural heterogeneity, the platform cannot ensure that suppliers will accept a dispatch order. One approach to mitigate this supply uncertainty is to provide suppliers with personalized menus of dispatch recommendations. A key issue then is to determine which dispatch orders (that can be passenger or goods services) should be allocated into the assortment menu of each supplier. This paper probabilistically models the suppliers’ order acceptance and choice behaviour, including a decline option. We propose two assortment optimization problems, disjoint and joint menus, to maximize the expected number of matches. We show that the objective function of the disjoint menu assortment problem is monotone non-decreasing submodular. In contrast, the objective function of the joint menu assortment problem is non-monotone and non-submodular. Accordingly, we present a standard greedy (SG) algorithm to solve the disjoint assortment problem, and γ∗-greedy and local search (LS) algorithms for the joint assortment problem. By bundling orders into consolidated routes, this paper extends the proposed menu assortment methods to the context of meal delivery services. A case study is presented based on the real-world demand in the Manhattan road network. The results show that drivers’ autonomy to decline the dispatch orders creates substantial coexistence of idle drivers and unmatched orders in the market. The proposed menu assortment methods curb such matching friction. Moreover, the numerical results demonstrate that the proposed algorithms significantly outperform the traditional dispatching policies applied in practice, e.g., one-to-one matching, in terms of platform efficiency, e.g., achieving more matches, customers’ experiences, e.g., reducing waiting time, and benefits for drivers, e.g., tapering off the income inequality among drivers.

Suggested Citation

  • Yang, Yue & Umboh, Seeun William & Ramezani, Mohsen, 2024. "Freelance drivers with a decline choice: Dispatch menus in on-demand mobility services for assortment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524002066
    DOI: 10.1016/j.trb.2024.103082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524002066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liran Einav & Chiara Farronato & Jonathan Levin, 2016. "Peer-to-Peer Markets," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 615-635, October.
    2. Hinxman, A. I., 1980. "The trim-loss and assortment problems: A survey," European Journal of Operational Research, Elsevier, vol. 5(1), pages 8-18, July.
    3. Ilgaz Sungur & Yingtao Ren & Fernando Ordóñez & Maged Dessouky & Hongsheng Zhong, 2010. "A Model and Algorithm for the Courier Delivery Problem with Uncertainty," Transportation Science, INFORMS, vol. 44(2), pages 193-205, May.
    4. Fielbaum, Andres & Kucharski, Rafał & Cats, Oded & Alonso-Mora, Javier, 2022. "How to split the costs and charge the travellers sharing a ride? aligning system’s optimum with users’ equilibrium," European Journal of Operational Research, Elsevier, vol. 301(3), pages 956-973.
    5. Xu, Zhengtian & Yin, Yafeng & Ye, Jieping, 2020. "On the supply curve of ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 29-43.
    6. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    7. Yang, Hai & Qin, Xiaoran & Ke, Jintao & Ye, Jieping, 2020. "Optimizing matching time interval and matching radius in on-demand ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 84-105.
    8. Mofidi, Seyed Shahab & Pazour, Jennifer A., 2019. "When is it beneficial to provide freelance suppliers with choice? A hierarchical approach for peer-to-peer logistics platforms," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 1-23.
    9. Ke Xu & Luping Sun & Jingchen Liu & Hansheng Wang, 2018. "An empirical investigation of taxi driver response behavior to ride-hailing requests: A spatio-temporal perspective," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-17, June.
    10. Alisoltani, Negin & Leclercq, Ludovic & Zargayouna, Mahdi, 2021. "Can dynamic ride-sharing reduce traffic congestion?," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 212-246.
    11. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    12. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    13. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    16. Zhang, Kenan & Nie, Yu (Marco), 2021. "Inter-platform competition in a regulated ride-hail market with pooling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    17. David W. Pentico, 1974. "The Assortment Problem with Probabilistic Demands," Management Science, INFORMS, vol. 21(3), pages 286-290, November.
    18. James M. Davis & Guillermo Gallego & Huseyin Topaloglu, 2014. "Assortment Optimization Under Variants of the Nested Logit Model," Operations Research, INFORMS, vol. 62(2), pages 250-273, April.
    19. Chiwei Yan & Helin Zhu & Nikita Korolko & Dawn Woodard, 2020. "Dynamic pricing and matching in ride‐hailing platforms," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 705-724, December.
    20. Mancini, Simona & Gansterer, Margaretha, 2022. "Bundle generation for last-mile delivery with occasional drivers," Omega, Elsevier, vol. 108(C).
    21. Roberto Baldacci & Vittorio Maniezzo & Aristide Mingozzi, 2004. "An Exact Method for the Car Pooling Problem Based on Lagrangean Column Generation," Operations Research, INFORMS, vol. 52(3), pages 422-439, June.
    22. Zhang, Ruolin & Masoud, Neda, 2021. "A distributed algorithm for operating large-scale ridesourcing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    23. Negin Alisoltani & Mostafa Ameli & Mahdi Zargayouna & Ludovic Leclercq, 2022. "Space-time clustering-based method to optimize shareability in real-time ride-sharing," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-25, January.
    24. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    25. Nourinejad, Mehdi & Ramezani, Mohsen, 2020. "Ride-Sourcing modeling and pricing in non-equilibrium two-sided markets," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 340-357.
    26. Andrés Fielbaum & Alejandro Tirachini, 2021. "The sharing economy and the job market: the case of ride-hailing drivers in Chile," Transportation, Springer, vol. 48(5), pages 2235-2261, October.
    27. Masoud, Neda & Jayakrishnan, R., 2017. "A real-time algorithm to solve the peer-to-peer ride-matching problem in a flexible ridesharing system," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 218-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    2. Ausseil, Rosemonde & Ulmer, Marlin W. & Pazour, Jennifer A., 2024. "Online acceptance probability approximation in peer-to-peer transportation," Omega, Elsevier, vol. 123(C).
    3. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    4. Shi, Junxin & Li, Xiangyong & Aneja, Y.P. & Li, Xiaonan, 2023. "Ride-matching for the ride-hailing platform with heterogeneous drivers," Transport Policy, Elsevier, vol. 136(C), pages 169-192.
    5. Daganzo, Carlos F. & Ouyang, Yanfeng & Yang, Haolin, 2020. "Analysis of ride-sharing with service time and detour guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 130-150.
    6. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    7. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    8. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    9. Ke, Jintao & Chen, Xiqun (Michael) & Yang, Hai & Li, Sen, 2022. "Coordinating supply and demand in ride-sourcing markets with pre-assigned pooling service and traffic congestion externality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    10. Zhang, Ruolin & Masoud, Neda, 2021. "A distributed algorithm for operating large-scale ridesourcing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    11. Li, Manzi & Jiang, Gege & Lo, Hong K., 2023. "Optimal cancellation penalty for competing ride-sourcing platforms under waiting time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    12. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    13. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
    14. Zhang, Zhuoye & Zhang, Fangni, 2024. "Optimal operation strategies of an urban crowdshipping platform in asset-light, asset-medium, or asset-heavy business format," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    15. Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
    16. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    17. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.
    18. Xu, Zhengtian & Yin, Yafeng & Chao, Xiuli & Zhu, Hongtu & Ye, Jieping, 2021. "A generalized fluid model of ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 587-605.
    19. Arslan, A.M. & Agatz, N.A.H. & Kroon, L.G. & Zuidwijk, R.A., 2016. "Crowdsourced Delivery: A Dynamic Pickup and Delivery Problem with Ad-hoc Drivers," ERIM Report Series Research in Management ERS-2016-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524002066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.