IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt3107w642.html
   My bibliography  Save this paper

The Ridesharing Routing Problem with Flexible Pickup and Drop-off Points

Author

Listed:
  • Dessouky, Maged
  • Mahtab, Zuhayer

Abstract

In major metropolitan areas such as Los Angeles County, ride-sharing systems can help reduce traffic congestion and increase the efficiency of the transportation system. This research project proposes three different solution approaches for solving the ride share routing problem with flexible pickup and drop-off points. The first is a dynamic programming-based route enumeration procedure that can be used to solve small-sized problems; the other two are branch and price-based heuristics for solving large problems. The researchers first provide a mixed integer nonlinear model for routing and pickup and drop-off points selection which they later decompose into a master and subproblem for solving. To validate the performance of their approaches and gather valuable insights about the ridesharing system, the researchers perform numerical experiments on a San Francisco Taxicab dataset. Results show that the approaches are efficient, solving instances with up to 300 nodes within 130 CPU seconds. For these datasets, incorporating flexible meeting points (i.e., pickup and drop-off points) can reduce the total travel time of the rideshare system by 18%. Sensitivity analysis shows that it can also decrease the time passengers wait time for rides by 43%. The methodologies in this study can help transportation planners design more efficient rideshare systems with less waiting, better passenger service, and less travel time. View the NCST Project Webpage

Suggested Citation

  • Dessouky, Maged & Mahtab, Zuhayer, 2022. "The Ridesharing Routing Problem with Flexible Pickup and Drop-off Points," Institute of Transportation Studies, Working Paper Series qt3107w642, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt3107w642
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/3107w642.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marilène Cherkesly & Guy Desaulniers & Gilbert Laporte, 2015. "Branch-Price-and-Cut Algorithms for the Pickup and Delivery Problem with Time Windows and Last-in-First-Out Loading," Transportation Science, INFORMS, vol. 49(4), pages 752-766, November.
    2. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    3. Zhi (Aaron) Cheng & Min-Seok Pang & Paul A. Pavlou, 2020. "Mitigating Traffic Congestion: The Role of Intelligent Transportation Systems," Information Systems Research, INFORMS, vol. 31(3), pages 653-674, September.
    4. Roberto Baldacci & Vittorio Maniezzo & Aristide Mingozzi, 2004. "An Exact Method for the Car Pooling Problem Based on Lagrangean Column Generation," Operations Research, INFORMS, vol. 52(3), pages 422-439, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boshuai Zhao & Kai Wang & Wenchao Wei & Roel Leus, 2024. "The Dial-a-Ride Problem with Limited Pickups per Trip," Papers 2408.07602, arXiv.org, revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guy Desaulniers & Diego Pecin & Claudio Contardo, 2019. "Selective pricing in branch-price-and-cut algorithms for vehicle routing," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 147-168, June.
    2. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    3. Du, Jianhui & Zhang, Zhiqin & Wang, Xu & Lau, Hoong Chuin, 2023. "A hierarchical optimization approach for dynamic pickup and delivery problem with LIFO constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Moon, Ilkyeong & Feng, Xuehao, 2017. "Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 78-97.
    5. Filippo Focacci & Andrea Lodi & Michela Milano, 2002. "A Hybrid Exact Algorithm for the TSPTW," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 403-417, November.
    6. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    7. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2024. "Integer optimization models and algorithms for the multi-period non-shareable resource allocation problem," European Journal of Operational Research, Elsevier, vol. 317(1), pages 43-59.
    8. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    9. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    10. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    11. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    12. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    13. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    14. Qin, Hu & Moriakin, Anton & Xu, Gangyan & Li, Jiliu, 2024. "The generator distribution problem for base stations during emergency power outage: A branch-and-price-and-cut approach," European Journal of Operational Research, Elsevier, vol. 318(3), pages 752-767.
    15. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Xuanjing Fang & Yanan Du & Yuzhuo Qiu, 2017. "Reducing Carbon Emissions in a Closed-Loop Production Routing Problem with Simultaneous Pickups and Deliveries under Carbon Cap-and-Trade," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    17. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    18. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    19. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    20. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).

    More about this item

    Keywords

    Engineering; Dynamic programming; Mixed integer programming; Origin and destination; Ridesharing; Routing; Travel time; Waiting time;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt3107w642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.