IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v32y2016i2d10.1007_s10878-016-0015-y.html
   My bibliography  Save this article

Tabu search for the real-world carpooling problem

Author

Listed:
  • Can Huang

    (Xiamen University)

  • Defu Zhang

    (Xiamen University)

  • Yain-Whar Si

    (University of Macau)

  • Stephen C. H. Leung

    (The University of Hong Kong)

Abstract

Carpooling is a flexible shared transportation system which can effectively reduce the vehicle numbers and fuel consumption. Although many carpooling systems have been proposed, most of them lack practicality, veracity, and efficiency. In this paper, we propose a new useful variant model of the long-term carpooling problem which involves multiple origins and one destination. Such problems commonly occur in a wide number of carpooling situations in real-world scenarios. Our work is motivated by the practical needs to solve environmental pollution, parking problems, traffic jams and low utilization of resources. A Tabu search algorithm is proposed in this paper to solve the carpooling problem. The proposed algorithm aims at a wide range of passenger distribution and routing problems. The computational results based on real world user data show the effectiveness of the proposed algorithm. Moreover, we developed a mobile application based on our carpooling model.

Suggested Citation

  • Can Huang & Defu Zhang & Yain-Whar Si & Stephen C. H. Leung, 2016. "Tabu search for the real-world carpooling problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 492-512, August.
  • Handle: RePEc:spr:jcomop:v:32:y:2016:i:2:d:10.1007_s10878-016-0015-y
    DOI: 10.1007/s10878-016-0015-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-016-0015-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-016-0015-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Semet, Frederic, 1998. "A tabu search heuristic for the undirected selective travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 539-545, April.
    2. Roberto Baldacci & Vittorio Maniezzo & Aristide Mingozzi, 2004. "An Exact Method for the Car Pooling Problem Based on Lagrangean Column Generation," Operations Research, INFORMS, vol. 52(3), pages 422-439, June.
    3. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    4. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Christos T., 2009. "A Guided Tabu Search for the Vehicle Routing Problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 195(3), pages 729-743, June.
    5. Fu, Zhanghua & Huang, Wenqi & Lü, Zhipeng, 2013. "Iterated tabu search for the circular open dimension problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 236-243.
    6. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2013. "Designing vehicle routes for a mix of different request types, under time windows and loading constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 303-317.
    7. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enzi, Miriam & Parragh, Sophie N. & Pisinger, David & Prandtstetter, Matthias, 2021. "Modeling and solving the multimodal car- and ride-sharing problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 290-303.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Michelle Dunbar & Simon Belieres & Nagesh Shukla & Mehrdad Amirghasemi & Pascal Perez & Nishikant Mishra, 2020. "A genetic column generation algorithm for sustainable spare part delivery: application to the Sydney DropPoint network," Annals of Operations Research, Springer, vol. 290(1), pages 923-941, July.
    3. Hosni, Hadi & Naoum-Sawaya, Joe & Artail, Hassan, 2014. "The shared-taxi problem: Formulation and solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 303-318.
    4. Zhang, Zhenzhen & Wei, Lijun & Lim, Andrew, 2015. "An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 20-35.
    5. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    6. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    7. Selma Khebbache-Hadji & Christian Prins & Alice Yalaoui & Mohamed Reghioui, 2013. "Heuristics and memetic algorithm for the two-dimensional loading capacitated vehicle routing problem with time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 307-336, March.
    8. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2012. "The Pallet-Packing Vehicle Routing Problem," Transportation Science, INFORMS, vol. 46(3), pages 341-358, August.
    9. İlker Küçükoğlu & Nursel Öztürk, 2019. "A hybrid meta-heuristic algorithm for vehicle routing and packing problem with cross-docking," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2927-2943, December.
    10. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    11. Naoum-Sawaya, Joe & Cogill, Randy & Ghaddar, Bissan & Sajja, Shravan & Shorten, Robert & Taheri, Nicole & Tommasi, Pierpaolo & Verago, Rudi & Wirth, Fabian, 2015. "Stochastic optimization approach for the car placement problem in ridesharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 173-184.
    12. Rahma Lahyani & Mahdi Khemakhem & Frédéric Semet, 2017. "A unified matheuristic for solving multi-constrained traveling salesman problems with profits," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 393-422, September.
    13. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    14. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    15. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.
    16. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    17. Lucas Agussurja & Shih-Fen Cheng & Hoong Chuin Lau, 2019. "A State Aggregation Approach for Stochastic Multiperiod Last-Mile Ride-Sharing Problems," Service Science, INFORMS, vol. 53(1), pages 148-166, February.
    18. Aldy Gunawan & Hoong Chuin Lau & Pieter Vansteenwegen & Kun Lu, 2017. "Well-tuned algorithms for the Team Orienteering Problem with Time Windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 861-876, August.
    19. Kim, Hyunjoon & Kim, Byung-In, 2022. "Hybrid dynamic programming with bounding algorithm for the multi-profit orienteering problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 550-566.
    20. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2013. "Designing vehicle routes for a mix of different request types, under time windows and loading constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 303-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:32:y:2016:i:2:d:10.1007_s10878-016-0015-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.