IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7443-d841571.html
   My bibliography  Save this article

Bi Objective Peer-to-Peer Ridesharing Model for Balancing Passengers Time and Costs

Author

Listed:
  • Seyed Omid Hasanpour Jesri

    (Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran 1591634311, Iran)

  • Mohsen Akbarpour Shirazi

    (Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran 1591634311, Iran)

Abstract

Ride-sharing services are one of the top growing sustainable transportation trends led by mobility-as-a-service companies. Ridesharing is a system that provides the ability to share vehicles on similar routes for passengers with similar or nearby destinations on short notice, leading to decreased costs for travelers. At the same time, though, it takes longer to get from place to place, increasing travel time. Therefore, a fundamental challenge for mobility service providers should be finding a balance between cost and travel time. This paper develops an integer bi-objective optimization model that integrates vehicle assignment, vehicle routing, and passenger assignment to find a non-dominated solution based on cost and time. The model allows a vehicle to be used multiple times by different passengers. The first objective seeks to minimize the total cost, including the fixed cost, defined as the supply cost per vehicle, and the operating cost, which is a function of the distance traveled. The second objective is to minimize the time it takes passengers to reach their destination. This is measured by how long it takes each vehicle to reach the passenger’s point of origin and how long it takes to get to the destination. The proposed model is solved using the AUGMECON method and the NSGA II algorithm. A real case study from Sioux Falls is presented to validate the applicability of the proposed model. This study shows that ridesharing helps passengers save money using mobility services without significant change in travel time.

Suggested Citation

  • Seyed Omid Hasanpour Jesri & Mohsen Akbarpour Shirazi, 2022. "Bi Objective Peer-to-Peer Ridesharing Model for Balancing Passengers Time and Costs," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7443-:d:841571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    3. Yi Cao & Shan Wang & Jinyang Li, 2021. "The Optimization Model of Ride-Sharing Route for Ride Hailing Considering Both System Optimization and User Fairness," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    4. Elżbieta Macioszek & Maria Cieśla, 2022. "External Environmental Analysis for Sustainable Bike-Sharing System Development," Energies, MDPI, vol. 15(3), pages 1-22, January.
    5. Alisoltani, Negin & Leclercq, Ludovic & Zargayouna, Mahdi, 2021. "Can dynamic ride-sharing reduce traffic congestion?," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 212-246.
    6. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    7. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun, 2016. "On the morning commute problem with carpooling behavior under parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 383-407.
    8. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.
    9. Biao Yin & Liu Liu & Nicolas Coulombel & Vincent Viguie, 2018. "Appraising the environmental benefits of ride-sharing: The Paris region case study," Post-Print hal-01695082, HAL.
    10. Ma, Rui & Zhang, H.M., 2017. "The morning commute problem with ridesharing and dynamic parking charges," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 345-374.
    11. Roberto Baldacci & Vittorio Maniezzo & Aristide Mingozzi, 2004. "An Exact Method for the Car Pooling Problem Based on Lagrangean Column Generation," Operations Research, INFORMS, vol. 52(3), pages 422-439, June.
    12. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, December.
    13. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    2. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    3. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    4. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    5. Huang, Zhihui & Long, Jiancheng & Szeto, W.Y. & Liu, Haoxiang, 2021. "Modeling and managing the morning commute problem with park-and-ride-sharing," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 190-226.
    6. Li, Yuanyuan & Liu, Yang & Xie, Jun, 2020. "A path-based equilibrium model for ridesharing matching," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 373-405.
    7. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    8. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    9. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    10. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    11. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    12. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.
    13. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    14. Zhang, Ruolin & Masoud, Neda, 2021. "A distributed algorithm for operating large-scale ridesourcing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    15. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    16. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    17. Zixuan Peng & Wenxuan Shan & Peng Jia & Bin Yu & Yonglei Jiang & Baozhen Yao, 2020. "Stable ride-sharing matching for the commuters with payment design," Transportation, Springer, vol. 47(1), pages 1-21, February.
    18. Zhang, Wenqing & Liu, Liangliang, 2022. "Exploring non-users' intention to adopt ride-sharing services: Taking into account increased risks due to the COVID-19 pandemic among other factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 180-195.
    19. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    20. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7443-:d:841571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.