IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v27y1979i3p503-515.html
   My bibliography  Save this item

The Multiple-Choice Knapsack Problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Isada, Yuriko & James, Ross J. W. & Nakagawa, Yuji, 2005. "An approach for solving nonlinear multi-objective separable discrete optimization problem with one constraint," European Journal of Operational Research, Elsevier, vol. 162(2), pages 503-513, April.
  2. Bagchi, Ansuman & Bhattacharyya, Nalinaksha & Chakravarti, Nilotpal, 1996. "LP relaxation of the two dimensional knapsack problem with box and GUB constraints," European Journal of Operational Research, Elsevier, vol. 89(3), pages 609-617, March.
  3. Gasparini, Gaia & Brunelli, Matteo & Chiriac, Marius Dan, 2022. "Multi-period portfolio decision analysis: A case study in the infrastructure management sector," Operations Research Perspectives, Elsevier, vol. 9(C).
  4. Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
  5. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
  6. Michael Stiglmayr & José Figueira & Kathrin Klamroth, 2014. "On the multicriteria allocation problem," Annals of Operations Research, Springer, vol. 222(1), pages 535-549, November.
  7. Dauzère-Pérès, Stéphane & Hassoun, Michael, 2020. "On the importance of variability when managing metrology capacity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 267-276.
  8. Pietro Michiardi & Damiano Carra & Sara Migliorini, 2021. "Cache-Based Multi-Query Optimization for Data-Intensive Scalable Computing Frameworks," Information Systems Frontiers, Springer, vol. 23(1), pages 35-51, February.
  9. Andonov, R. & Poirriez, V. & Rajopadhye, S., 2000. "Unbounded knapsack problem: Dynamic programming revisited," European Journal of Operational Research, Elsevier, vol. 123(2), pages 394-407, June.
  10. Silvio Alexandre de Araujo & Bert De Reyck & Zeger Degraeve & Ioannis Fragkos & Raf Jans, 2015. "Period Decompositions for the Capacitated Lot Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 431-448, August.
  11. Melachrinoudis, Emanuel & Kozanidis, George, 2002. "A mixed integer knapsack model for allocating funds to highway safety improvements," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 789-803, November.
  12. Francis, Peter & Zhang, Guangming & Smilowitz, Karen, 2007. "Improved modeling and solution methods for the multi-resource routing problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1045-1059, August.
  13. Sung, C. S. & Cho, Y. K., 2000. "Reliability optimization of a series system with multiple-choice and budget constraints," European Journal of Operational Research, Elsevier, vol. 127(1), pages 159-171, November.
  14. Johnston, Robert E. & Khan, Lutfar R., 1995. "Bounds for nested knapsack problems," European Journal of Operational Research, Elsevier, vol. 81(1), pages 154-165, February.
  15. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
  16. Morton, Alec, 2014. "Aversion to health inequalities in healthcare prioritisation: A multicriteria optimisation perspective," Journal of Health Economics, Elsevier, vol. 36(C), pages 164-173.
  17. Patrick Gemander & Wei-Kun Chen & Dieter Weninger & Leona Gottwald & Ambros Gleixner & Alexander Martin, 2020. "Two-row and two-column mixed-integer presolve using hashing-based pairing methods," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 205-240, October.
  18. Lim, Gino J. & Sonmez, Ayse Durukan, 2013. "γ-Robust facility relocation problem," European Journal of Operational Research, Elsevier, vol. 229(1), pages 67-74.
  19. Zaarour, Nizar & Melachrinoudis, Emanuel & Solomon, Marius M., 2016. "Maximizing revenue of end of life items in retail stores," European Journal of Operational Research, Elsevier, vol. 255(1), pages 133-141.
  20. Tobin, Roger L., 2002. "Relief period optimization under budget constraints," European Journal of Operational Research, Elsevier, vol. 139(1), pages 42-61, May.
  21. Degraeve, Z. & Jans, R.F., 2003. "Improved Lower Bounds For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-026-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  22. Endre Boros & Noam Goldberg & Paul Kantor & Jonathan Word, 2011. "Optimal sequential inspection policies," Annals of Operations Research, Springer, vol. 187(1), pages 89-119, July.
  23. Vijay Aggarwal & Narsingh Deo & Dilip Sarkar, 1992. "The knapsack problem with disjoint multiple‐choice constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 213-227, March.
  24. Orlin, J. B., 1984. "Some Very Easy Knapsack/Partition Problems," Econometric Institute Archives 272288, Erasmus University Rotterdam.
  25. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
  26. Andris A. Zoltners & Prabhakant Sinha, 2005. "The 2004 ISMS Practice Prize Winner—Sales Territory Design: Thirty Years of Modeling and Implementation," Marketing Science, INFORMS, vol. 24(3), pages 313-331, September.
  27. Saligrama R. Agnihothri & Sridhar Narasimhan & Hasan Pirkul, 1990. "An assignment problem with queueing time cost," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(2), pages 231-244, April.
  28. Jacob B. Feldman & Huseyin Topaloglu, 2015. "Capacity Constraints Across Nests in Assortment Optimization Under the Nested Logit Model," Operations Research, INFORMS, vol. 63(4), pages 812-822, August.
  29. Carrabs, Francesco, 2021. "A biased random-key genetic algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 292(3), pages 830-854.
  30. Tsesmetzis, Dimitrios & Roussaki, Ioanna & Sykas, Efstathios, 2008. "QoS-aware service evaluation and selection," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1101-1112, December.
  31. Pisinger, David, 2001. "Budgeting with bounded multiple-choice constraints," European Journal of Operational Research, Elsevier, vol. 129(3), pages 471-480, March.
  32. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
  33. Wilbaut, Christophe & Todosijevic, Raca & Hanafi, Saïd & Fréville, Arnaud, 2023. "Heuristic and exact reduction procedures to solve the discounted 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 901-911.
  34. Tue R. L. Christensen & Kim Allan Andersen & Andreas Klose, 2013. "Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming," Transportation Science, INFORMS, vol. 47(3), pages 428-438, August.
  35. Drexl, Andreas & Haase, Knut, 1996. "Fast approximation methods for sales force deployment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 411, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  36. George Kozanidis, 2009. "Solving the linear multiple choice knapsack problem with two objectives: profit and equity," Computational Optimization and Applications, Springer, vol. 43(2), pages 261-294, June.
  37. Drexl, Andreas & Jørnsten, Kurt, 2007. "Pricing the multiple-choice nested knapsack problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 626, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  38. Edward Y H Lin & Chung-Min Wu, 2004. "The multiple-choice multi-period knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 187-197, February.
  39. Mohammadivojdan, Roshanak & Geunes, Joseph, 2018. "The newsvendor problem with capacitated suppliers and quantity discounts," European Journal of Operational Research, Elsevier, vol. 271(1), pages 109-119.
  40. Ewa M. Bednarczuk & Janusz Miroforidis & Przemysław Pyzel, 2018. "A multi-criteria approach to approximate solution of multiple-choice knapsack problem," Computational Optimization and Applications, Springer, vol. 70(3), pages 889-910, July.
  41. Zhu, Xiaoyan & Wilhelm, Wilbert E., 2007. "Three-stage approaches for optimizing some variations of the resource constrained shortest-path sub-problem in a column generation context," European Journal of Operational Research, Elsevier, vol. 183(2), pages 564-577, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.