IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v222y2014i1p535-54910.1007-s10479-013-1356-x.html
   My bibliography  Save this article

On the multicriteria allocation problem

Author

Abstract

We consider multicriteria allocation problems with linear sum objectives. Despite the fact that the single objective allocation problem is easily solvable, we show that already in the bicriteria case the problem becomes intractable, is NP-hard and has a non-connected efficient set in general. Using the equivalence to appropriately defined multiple criteria multiple-choice knapsack problems, an algorithm is suggested that uses partial dominance conditions to save computational time. Different types of enumeration schemes are discussed, for example, with respect to the number of necessary filtering operations and with regard to possible parallelizations of the procedure. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Michael Stiglmayr & José Figueira & Kathrin Klamroth, 2014. "On the multicriteria allocation problem," Annals of Operations Research, Springer, vol. 222(1), pages 535-549, November.
  • Handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:535-549:10.1007/s10479-013-1356-x
    DOI: 10.1007/s10479-013-1356-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1356-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1356-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prabhakant Sinha & Andris A. Zoltners, 1979. "The Multiple-Choice Knapsack Problem," Operations Research, INFORMS, vol. 27(3), pages 503-515, June.
    2. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    3. Przybylski, Anthony & Gandibleux, Xavier & Ehrgott, Matthias, 2008. "Two phase algorithms for the bi-objective assignment problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 509-533, March.
    4. Deniz Aksen & Nuray Piyade & Necati Aras, 2010. "The budget constrained r-interdiction median problem with capacity expansion," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 269-291, September.
    5. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
    6. Ehrgott, Matthias & Klamroth, Kathrin, 1997. "Connectedness of efficient solutions in multiple criteria combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 97(1), pages 159-166, February.
    7. Jochen Gorski & Kathrin Klamroth & Stefan Ruzika, 2011. "Connectedness of Efficient Solutions in Multiple Objective Combinatorial Optimization," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 475-497, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Harun, Sarah, 2020. "A stochastic programming model with endogenous and exogenous uncertainty for reliable network design under random disruption," European Journal of Operational Research, Elsevier, vol. 285(2), pages 670-694.
    2. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    3. Ghaffarinasab, Nader & Motallebzadeh, Alireza, 2018. "Hub interdiction problem variants: Models and metaheuristic solution algorithms," European Journal of Operational Research, Elsevier, vol. 267(2), pages 496-512.
    4. Michael Stiglmayr & José Rui Figueira & Kathrin Klamroth & Luís Paquete & Britta Schulze, 2022. "Decision space robustness for multi-objective integer linear programming," Annals of Operations Research, Springer, vol. 319(2), pages 1769-1791, December.
    5. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2021. "The impact of congestion on protection decisions in supply networks under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    6. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    7. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2016. "Hub Interdiction & Hub Protection problems: Model formulations & Exact Solution methods. (Revised)," IIMA Working Papers WP2016-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.
    9. Pedro Correia & Luís Paquete & José Rui Figueira, 2021. "Finding multi-objective supported efficient spanning trees," Computational Optimization and Applications, Springer, vol. 78(2), pages 491-528, March.
    10. Girish Ch. Dey & Mamata Jenamani, 2019. "Optimizing fortification plan of capacitated facilities with maximum distance limits," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 151-173, March.
    11. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    12. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    13. Seyed Mohsen Mousavi & Ardeshir Bahreininejad & S. Nurmaya Musa & Farazila Yusof, 2017. "A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 191-206, January.
    14. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    15. Yifei Zhao & Stein W. Wallace, 2016. "Appraising redundancy in facility layout," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 665-679, February.
    16. Melachrinoudis, Emanuel & Kozanidis, George, 2002. "A mixed integer knapsack model for allocating funds to highway safety improvements," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 789-803, November.
    17. Jamain, Florian, 2014. "Représentations discrètes de l'ensemble des points non dominés pour des problèmes d'optimisation multi-objectifs," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14002 edited by Bazgan, Cristina.
    18. Andris A. Zoltners & Prabhakant Sinha, 2005. "The 2004 ISMS Practice Prize Winner—Sales Territory Design: Thirty Years of Modeling and Implementation," Marketing Science, INFORMS, vol. 24(3), pages 313-331, September.
    19. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    20. Francis, Peter & Zhang, Guangming & Smilowitz, Karen, 2007. "Improved modeling and solution methods for the multi-resource routing problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1045-1059, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:535-549:10.1007/s10479-013-1356-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.