IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v70y2018i3d10.1007_s10589-018-9988-z.html
   My bibliography  Save this article

A multi-criteria approach to approximate solution of multiple-choice knapsack problem

Author

Listed:
  • Ewa M. Bednarczuk

    (Systems Research Institute, Polish Academy of Sciences
    Warsaw University of Technology)

  • Janusz Miroforidis

    (Systems Research Institute, Polish Academy of Sciences)

  • Przemysław Pyzel

    (Systems Research Institute, Polish Academy of Sciences)

Abstract

We propose a method for finding approximate solutions to multiple-choice knapsack problems. To this aim we transform the multiple-choice knapsack problem into a bi-objective optimization problem whose solution set contains solutions of the original multiple-choice knapsack problem. The method relies on solving a series of suitably defined linearly scalarized bi-objective problems. The novelty which makes the method attractive from the computational point of view is that we are able to solve explicitly those linearly scalarized bi-objective problems with the help of the closed-form formulae. The method is computationally analyzed on a set of large-scale problem instances (test problems) of two categories: uncorrelated and weakly correlated. Computational results show that after solving, in average 10 scalarized bi-objective problems, the optimal value of the original knapsack problem is approximated with the accuracy comparable to the accuracies obtained by the greedy algorithm and an exact algorithm. More importantly, the respective approximate solution to the original knapsack problem (for which the approximate optimal value is attained) can be found without resorting to the dynamic programming. In the test problems, the number of multiple-choice constraints ranges up to hundreds with hundreds variables in each constraint.

Suggested Citation

  • Ewa M. Bednarczuk & Janusz Miroforidis & Przemysław Pyzel, 2018. "A multi-criteria approach to approximate solution of multiple-choice knapsack problem," Computational Optimization and Applications, Springer, vol. 70(3), pages 889-910, July.
  • Handle: RePEc:spr:coopap:v:70:y:2018:i:3:d:10.1007_s10589-018-9988-z
    DOI: 10.1007/s10589-018-9988-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-9988-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-9988-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Cherfi & M. Hifi, 2010. "A column generation method for the multiple-choice multi-dimensional knapsack problem," Computational Optimization and Applications, Springer, vol. 46(1), pages 51-73, May.
    2. Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
    3. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    4. Pisinger, David, 2001. "Budgeting with bounded multiple-choice constraints," European Journal of Operational Research, Elsevier, vol. 129(3), pages 471-480, March.
    5. Dudzinski, Krzysztof & Walukiewicz, Stanislaw, 1987. "Exact methods for the knapsack problem and its generalizations," European Journal of Operational Research, Elsevier, vol. 28(1), pages 3-21, January.
    6. Prabhakant Sinha & Andris A. Zoltners, 1979. "The Multiple-Choice Knapsack Problem," Operations Research, INFORMS, vol. 27(3), pages 503-515, June.
    7. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    8. Nauss, Robert M., 1978. "The 0-1 knapsack problem with multiple choice constraints," European Journal of Operational Research, Elsevier, vol. 2(2), pages 125-131, March.
    9. Chen, Yuning & Hao, Jin-Kao, 2014. "A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 313-322.
    10. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
    11. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Hsien Liao, 2021. "Axiomatic Results for Weighted Allocation Rules under Multiattribute Situations," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    2. Yu-Hsien Liao, 2024. "Evaluating Mechanism and Related Axiomatic Results under Multiple Considerations," Mathematics, MDPI, vol. 12(9), pages 1-14, May.
    3. Yu-Hsien Liao, 2024. "Fuzzy Assessment Mechanisms under Multi-Objective Considerations," Mathematics, MDPI, vol. 12(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Chao & Lu, Guanzhou & Yao, Xin & Li, Jinlong, 2017. "An iterative pseudo-gap enumeration approach for the Multidimensional Multiple-choice Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 260(1), pages 1-11.
    2. Caserta, Marco & Voß, Stefan, 2019. "The robust multiple-choice multidimensional knapsack problem," Omega, Elsevier, vol. 86(C), pages 16-27.
    3. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    4. Drexl, Andreas & Jørnsten, Kurt, 2007. "Pricing the multiple-choice nested knapsack problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 626, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    6. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    7. Jaeyoung Yang & Yong-Hyuk Kim & Yourim Yoon, 2022. "A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    8. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    9. Renata Mansini & Roberto Zanotti, 2020. "A Core-Based Exact Algorithm for the Multidimensional Multiple Choice Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1061-1079, October.
    10. Zhu, Xiaoyan & Wilhelm, Wilbert E., 2007. "Three-stage approaches for optimizing some variations of the resource constrained shortest-path sub-problem in a column generation context," European Journal of Operational Research, Elsevier, vol. 183(2), pages 564-577, December.
    11. Lamanna, Leonardo & Mansini, Renata & Zanotti, Roberto, 2022. "A two-phase kernel search variant for the multidimensional multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 53-65.
    12. Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
    13. Degraeve, Z. & Jans, R.F., 2003. "Improved Lower Bounds For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-026-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    15. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    16. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    17. Tue R. L. Christensen & Kim Allan Andersen & Andreas Klose, 2013. "Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming," Transportation Science, INFORMS, vol. 47(3), pages 428-438, August.
    18. Edward Y H Lin & Chung-Min Wu, 2004. "The multiple-choice multi-period knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 187-197, February.
    19. Sylvain Barde, 2015. "Back to the Future: Economic Self-Organisation and Maximum Entropy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 337-358, February.
    20. Dauzère-Pérès, Stéphane & Hassoun, Michael, 2020. "On the importance of variability when managing metrology capacity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 267-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:70:y:2018:i:3:d:10.1007_s10589-018-9988-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.