IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v229y2013i1p67-74.html
   My bibliography  Save this article

γ-Robust facility relocation problem

Author

Listed:
  • Lim, Gino J.
  • Sonmez, Ayse Durukan

Abstract

In this paper, we consider relocating facilities, where we have demand changes in the network. Relocations are performed by closing some of the existing facilities from low demand areas and opening new ones in newly emerging areas. However, the actual changes of demand are not known in advance. Therefore, different scenarios with known probabilities are used to capture such demand changes. We develop a mixed integer programming model for facility relocation that minimizes the expected weighted distance while making sure that relative regret for each scenario is no greater than γ. We analyzed the problem structure and developed a Lagrangian Decomposition Algorithm (LDA) to expedite the solution process. Numerical experiments are carried out to show the performance of LDA against the exact solution method.

Suggested Citation

  • Lim, Gino J. & Sonmez, Ayse Durukan, 2013. "γ-Robust facility relocation problem," European Journal of Operational Research, Elsevier, vol. 229(1), pages 67-74.
  • Handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:67-74
    DOI: 10.1016/j.ejor.2013.02.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713001665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.02.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S R Gregg & J M Mulvey & J Wolpert, 1988. "A Stochastic Planning System for Siting and Closing Public Service Facilities," Environment and Planning A, , vol. 20(1), pages 83-98, January.
    2. Yolanda M. Carson & Rajan Batta, 1990. "Locating an Ambulance on the Amherst Campus of the State University of New York at Buffalo," Interfaces, INFORMS, vol. 20(5), pages 43-49, October.
    3. Prabhakant Sinha & Andris A. Zoltners, 1979. "The Multiple-Choice Knapsack Problem," Operations Research, INFORMS, vol. 27(3), pages 503-515, June.
    4. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    5. Sonmez, Ayse Durukan & Lim, Gino J., 2012. "A decomposition approach for facility location and relocation problem with uncertain number of future facilities," European Journal of Operational Research, Elsevier, vol. 218(2), pages 327-338.
    6. Jerry R. Weaver & Richard L. Church, 1983. "Computational Procedures for Location Problems on Stochastic Networks," Transportation Science, INFORMS, vol. 17(2), pages 168-180, May.
    7. Conde, Eduardo, 2007. "Minmax regret location-allocation problem on a network under uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1025-1039, June.
    8. Daniel Serra & Vladimir Marianov, 1996. "The P-median problem in a changing network: The case of Barcelona," Economics Working Papers 180, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Barcelo, Jaime & Fernandez, Elena & Jornsten, Kurt O., 1991. "Computational results from a new Lagrangean relaxation algorithm for the capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 53(1), pages 38-45, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afshartous, David & Guan, Yongtao & Mehrotra, Anuj, 2009. "US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1086-1096, August.
    2. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    3. Arash Gourtani & Tri-Dung Nguyen & Huifu Xu, 2020. "A distributionally robust optimization approach for two-stage facility location problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 141-172, June.
    4. Hoon Jang, 2019. "Designing capacity rollout plan for neonatal care service system in Korea," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 809-830, September.
    5. Mohammad M. Fazel-Zarandi & J. Christopher Beck, 2012. "Using Logic-Based Benders Decomposition to Solve the Capacity- and Distance-Constrained Plant Location Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 387-398, August.
    6. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    7. Renata Turkeš & Kenneth Sörensen & Daniel Palhazi Cuervo, 2021. "A matheuristic for the stochastic facility location problem," Journal of Heuristics, Springer, vol. 27(4), pages 649-694, August.
    8. Batta, Rajan & Lejeune, Miguel & Prasad, Srinivas, 2014. "Public facility location using dispersion, population, and equity criteria," European Journal of Operational Research, Elsevier, vol. 234(3), pages 819-829.
    9. Dezhi Zhang & Shuxin Yang & Shuangyan Li & Jiajun Fan & Bin Ji, 2020. "Integrated Optimization of the Location–Inventory Problem of Maintenance Component Distribution for High-Speed Railway Operations," Sustainability, MDPI, vol. 12(13), pages 1-25, July.
    10. Snyder, Lawrence V. & Daskin, Mark S. & Teo, Chung-Piaw, 2007. "The stochastic location model with risk pooling," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1221-1238, June.
    11. Jia Shu & Qiang Ma & Sijie Li, 2010. "Integrated location and two-echelon inventory network design under uncertainty," Annals of Operations Research, Springer, vol. 181(1), pages 233-247, December.
    12. Marianov, Vladimir & Eiselt, H.A., 2024. "Fifty Years of Location Theory - A Selective Review," European Journal of Operational Research, Elsevier, vol. 318(3), pages 701-718.
    13. Marković, Nikola & Ryzhov, Ilya O. & Schonfeld, Paul, 2017. "Evasive flow capture: A multi-period stochastic facility location problem with independent demand," European Journal of Operational Research, Elsevier, vol. 257(2), pages 687-703.
    14. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    15. Alfandari, Laurent, 2004. "Choice Rules with Size Constraints for Multiple Criteria Decision Making," ESSEC Working Papers DR 04002, ESSEC Research Center, ESSEC Business School.
    16. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. Ahuja, R.K. & Orlin, J.B. & Pallottino, S. & Scaparra, M.P. & Scutella, M.G., 2003. "A Multi-Exchange Heuristic For The Single Source Capacitated Facility Location Problem," Working papers 4387-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    18. Madadi, AliReza & Kurz, Mary E. & Mason, Scott J. & Taaffe, Kevin M., 2014. "Supply chain design under quality disruptions and tainted materials delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 105-123.
    19. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    20. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:67-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.