IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v289y2021i2p435-455.html
   My bibliography  Save this article

A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts

Author

Listed:
  • Coniglio, Stefano
  • Furini, Fabio
  • San Segundo, Pablo

Abstract

We study the Knapsack Problem with Conflicts, a generalization of the Knapsack Problem in which a set of conflicts specifies pairs of items which cannot be simultaneously selected. In this work, we propose a novel combinatorial branch-and-bound algorithm for this problem based on an n-ary branching scheme. Our algorithm effectively combines different procedures for pruning the branch-and-bound nodes based on different relaxations of the Knapsack Problem with Conflicts. Its main elements of novelty are: (i) the adoption of the branching-and-pruned set branching scheme which, while extensively used in the maximum-clique literature, was never successfully employed for solving the Knapsack Problem with Conflicts; (ii) the adoption of the Multiple-Choice Knapsack Problem for the derivation of upper bounds used for pruning the branch-and-bound tree nodes; and (iii) the design of a new upper bound for the latter problem which can be computed very efficiently. Key to our algorithm is its high pruning potential and the low computational effort that it requires to process each branch-and-bound node. An extensive set of experiments carried out on the benchmark instances typically used in the literature shows that, for edge densities ranging from 0.1 to 0.9, our algorithm is faster by up to two orders of magnitude than the state-of-the-art method and by up to several orders of magnitude than a state-of-the-art mixed-integer linear programming solver.

Suggested Citation

  • Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
  • Handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:435-455
    DOI: 10.1016/j.ejor.2020.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720306342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evgeny Maslov & Mikhail Batsyn & Panos Pardalos, 2014. "Speeding up branch and bound algorithms for solving the maximum clique problem," Journal of Global Optimization, Springer, vol. 59(1), pages 1-21, May.
    2. Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
    3. Ruslan Sadykov & François Vanderbeck, 2013. "Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 244-255, May.
    4. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    5. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    6. Li, Chu-Min & Liu, Yanli & Jiang, Hua & Manyà, Felip & Li, Yu, 2018. "A new upper bound for the maximum weight clique problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 66-77.
    7. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    8. Chu-Min Li & Zhiwen Fang & Hua Jiang & Ke Xu, 2018. "Incremental Upper Bound for the Maximum Clique Problem," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 137-153, February.
    9. Prabhakant Sinha & Andris A. Zoltners, 1979. "The Multiple-Choice Knapsack Problem," Operations Research, INFORMS, vol. 27(3), pages 503-515, June.
    10. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2018. "A nonconvex quadratic optimization approach to the maximum edge weight clique problem," Journal of Global Optimization, Springer, vol. 72(2), pages 219-240, October.
    11. Samir Elhedhli & Lingzi Li & Mariem Gzara & Joe Naoum-Sawaya, 2011. "A Branch-and-Price Algorithm for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 404-415, August.
    12. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    13. Suresh Bolusani & Stefano Coniglio & Ted K. Ralphs & Sahar Tahernejad, 2020. "A Unified Framework for Multistage Mixed Integer Linear Optimization," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 513-560, Springer.
    14. Steffen Rebennack & Marcus Oswald & Dirk Oliver Theis & Hanna Seitz & Gerhard Reinelt & Panos M. Pardalos, 2011. "A Branch and Cut solver for the maximum stable set problem," Journal of Combinatorial Optimization, Springer, vol. 21(4), pages 434-457, May.
    15. Albert E. Fernandes Muritiba & Manuel Iori & Enrico Malaguti & Paolo Toth, 2010. "Algorithms for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 401-415, August.
    16. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    17. Martello, Silvano & Toth, Paolo, 1977. "An upper bound for the zero-one knapsack problem and a branch and bound algorithm," European Journal of Operational Research, Elsevier, vol. 1(3), pages 169-175, May.
    18. Mhand Hifi & Nabil Otmani, 2012. "An algorithm for the disjunctively constrained knapsack problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 13(1), pages 22-43.
    19. Della Croce, Federico & Tadei, Roberto, 1994. "A multi-KP modeling for the maximum-clique problem," European Journal of Operational Research, Elsevier, vol. 73(3), pages 555-561, March.
    20. Andrea Bettinelli & Valentina Cacchiani & Enrico Malaguti, 2017. "A Branch-and-Bound Algorithm for the Knapsack Problem with Conflict Graph," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 457-473, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mancini, Simona & Gansterer, Margaretha, 2021. "Vehicle scheduling for rental-with-driver services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Bigler, T. & Kammermann, M. & Baumann, P., 2023. "A matheuristic for a customer assignment problem in direct marketing," European Journal of Operational Research, Elsevier, vol. 304(2), pages 689-708.
    3. Raka Jovanovic & Stefan Voß, 2024. "Matheuristic fixed set search applied to the multidimensional knapsack problem and the knapsack problem with forfeit sets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1329-1365, December.
    4. Furini, Fabio & Ljubić, Ivana & San Segundo, Pablo & Zhao, Yanlu, 2021. "A branch-and-cut algorithm for the Edge Interdiction Clique Problem," European Journal of Operational Research, Elsevier, vol. 294(1), pages 54-69.
    5. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2023. "Features for the 0-1 knapsack problem based on inclusionwise maximal solutions," European Journal of Operational Research, Elsevier, vol. 311(1), pages 36-55.
    6. Orlando Rivera Letelier & François Clautiaux & Ruslan Sadykov, 2022. "Bin Packing Problem with Time Lags," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2249-2270, July.
    7. Wei, Zequn & Hao, Jin-Kao & Ren, Jintong & Glover, Fred, 2023. "Responsive strategic oscillation for solving the disjunctively constrained knapsack problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 993-1009.
    8. San Segundo, Pablo & Furini, Fabio & Álvarez, David & Pardalos, Panos M., 2023. "CliSAT: A new exact algorithm for hard maximum clique problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1008-1025.
    9. Stefano Coniglio & Stefano Gualandi, 2022. "Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1006-1023, March.
    10. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. San Segundo, Pablo & Furini, Fabio & Álvarez, David & Pardalos, Panos M., 2023. "CliSAT: A new exact algorithm for hard maximum clique problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1008-1025.
    2. Stefano Coniglio & Stefano Gualandi, 2022. "Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1006-1023, March.
    3. Andrea Bettinelli & Valentina Cacchiani & Enrico Malaguti, 2017. "A Branch-and-Bound Algorithm for the Knapsack Problem with Conflict Graph," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 457-473, August.
    4. Daniel Kowalczyk & Roel Leus, 2017. "An exact algorithm for parallel machine scheduling with conflicts," Journal of Scheduling, Springer, vol. 20(4), pages 355-372, August.
    5. Furini, Fabio & Ljubić, Ivana & San Segundo, Pablo & Zhao, Yanlu, 2021. "A branch-and-cut algorithm for the Edge Interdiction Clique Problem," European Journal of Operational Research, Elsevier, vol. 294(1), pages 54-69.
    6. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    7. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    8. Orlando Rivera Letelier & François Clautiaux & Ruslan Sadykov, 2022. "Bin Packing Problem with Time Lags," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2249-2270, July.
    9. Saharnaz Mehrani & Carlos Cardonha & David Bergman, 2022. "Models and Algorithms for the Bin-Packing Problem with Minimum Color Fragmentation," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1070-1085, March.
    10. Şuvak, Zeynep & Altınel, İ. Kuban & Aras, Necati, 2020. "Exact solution algorithms for the maximum flow problem with additional conflict constraints," European Journal of Operational Research, Elsevier, vol. 287(2), pages 410-437.
    11. San Segundo, Pablo & Furini, Fabio & León, Rafael, 2022. "A new branch-and-filter exact algorithm for binary constraint satisfaction problems," European Journal of Operational Research, Elsevier, vol. 299(2), pages 448-467.
    12. Renatha Capua & Yuri Frota & Luiz Satoru Ochi & Thibaut Vidal, 2018. "A study on exponential-size neighborhoods for the bin packing problem with conflicts," Journal of Heuristics, Springer, vol. 24(4), pages 667-695, August.
    13. Hu, Qian & Zhu, Wenbin & Qin, Hu & Lim, Andrew, 2017. "A branch-and-price algorithm for the two-dimensional vector packing problem with piecewise linear cost function," European Journal of Operational Research, Elsevier, vol. 260(1), pages 70-80.
    14. Ulrich Pferschy & Joachim Schauer, 2017. "Approximation of knapsack problems with conflict and forcing graphs," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1300-1323, May.
    15. Borja Ena & Alberto Gomez & Borja Ponte & Paolo Priore & Diego Diaz, 2022. "Homogeneous grouping of non-prime steel products for online auctions: a case study," Annals of Operations Research, Springer, vol. 315(1), pages 591-621, August.
    16. Luciano Costa & Claudio Contardo & Guy Desaulniers & Julian Yarkony, 2022. "Stabilized Column Generation Via the Dynamic Separation of Aggregated Rows," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1141-1156, March.
    17. Wei, Zequn & Hao, Jin-Kao & Ren, Jintong & Glover, Fred, 2023. "Responsive strategic oscillation for solving the disjunctively constrained knapsack problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 993-1009.
    18. Bigler, T. & Kammermann, M. & Baumann, P., 2023. "A matheuristic for a customer assignment problem in direct marketing," European Journal of Operational Research, Elsevier, vol. 304(2), pages 689-708.
    19. Ekici, Ali, 2023. "A large neighborhood search algorithm and lower bounds for the variable-Sized bin packing problem with conflicts," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1007-1020.
    20. Fleszar, Krzysztof, 2022. "A MILP model and two heuristics for the Bin Packing Problem with Conflicts and Item Fragmentation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 37-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:435-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.