IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v51y2015icp847-855.html
   My bibliography  Save this item

Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lygnerud, Kristina & Klugman, Sofia & Fransson, Nathalie & Nilsson, Johanna, 2022. "Risk assessment of industrial excess heat collaborations – Empirical data from new and ongoing installations," Energy, Elsevier, vol. 255(C).
  2. Pia Manz & Katerina Kermeli & Urban Persson & Marius Neuwirth & Tobias Fleiter & Wina Crijns-Graus, 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
  3. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
  4. Jamaluddin, Khairulnadzmi & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Hamzah, Khaidzir & Klemeš, Jiří Jaromír, 2022. "Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis," Energy, Elsevier, vol. 252(C).
  5. Chinese, Damiana & Santin, Maurizio & Saro, Onorio, 2017. "Water-energy and GHG nexus assessment of alternative heat recovery options in industry: A case study on electric steelmaking in Europe," Energy, Elsevier, vol. 141(C), pages 2670-2687.
  6. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
  7. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
  8. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
  9. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
  10. Knudsen, Brage Rugstad & Rohde, Daniel & Kauko, Hanne, 2021. "Thermal energy storage sizing for industrial waste-heat utilization in district heating: A model predictive control approach," Energy, Elsevier, vol. 234(C).
  11. Jouhara, Hussam & Nieto, Nerea & Egilegor, Bakartxo & Zuazua, Josu & González, Eva & Yebra, Ignacio & Igesias, Alfredo & Delpech, Bertrand & Almahmoud, Sulaiman & Brough, Daniel & Malinauskaite, Jurgi, 2023. "Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry," Energy, Elsevier, vol. 266(C).
  12. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
  13. Miliozzi, Adio & Chieruzzi, Manila & Torre, Luigi, 2019. "Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material," Applied Energy, Elsevier, vol. 250(C), pages 1023-1035.
  14. Zheng, Bin & Sun, Peng & Liu, Yongqi & Zhao, Qiang, 2018. "Heat transfer of calcined petroleum coke and heat exchange tube for calcined petroleum coke waste heat recovery," Energy, Elsevier, vol. 155(C), pages 56-65.
  15. Ekmekci, Ece & Aydin, Murat & Ozturk, Z. Fatih & Sisman, Altug, 2024. "Very high temperature BTES: A potential for operationally cost-free and emission-free heating," Applied Energy, Elsevier, vol. 360(C).
  16. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
  17. Vojtěch Turek & Bohuslav Kilkovský & Ján Daxner & Dominika Babička Fialová & Zdeněk Jegla, 2024. "Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review," Energies, MDPI, vol. 17(9), pages 1-29, April.
  18. Wheatcroft, Edward & Wynn, Henry P. & Lygnerud, Kristina & Bonvicini, Giorgio & Bonvicini, Giorgio & Lenote, Daniela, 2020. "The role of low temperature waste heat recovery in achieving 2050 goals: a policy positioning paper," LSE Research Online Documents on Economics 104136, London School of Economics and Political Science, LSE Library.
  19. Pili, R. & García Martínez, L. & Wieland, C. & Spliethoff, H., 2020. "Techno-economic potential of waste heat recovery from German energy-intensive industry with Organic Rankine Cycle technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  20. Lygnerud, Kristina & Wheatcroft, Edward & Wynn, Henry, 2019. "Contracts, business models and barriers to investing in low temperature district heating projects," LSE Research Online Documents on Economics 101286, London School of Economics and Political Science, LSE Library.
  21. Fan, Yubin & Zhang, Chunwei & Jiang, Long & Zhang, Xuejun & Qiu, Limin, 2022. "Exploration on two-stage latent thermal energy storage for heat recovery in cryogenic air separation purification system," Energy, Elsevier, vol. 239(PB).
  22. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
  23. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
  24. Li, Dacheng & Wang, Jihong & Ding, Yulong & Yao, Hua & Huang, Yun, 2019. "Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage," Applied Energy, Elsevier, vol. 236(C), pages 1168-1182.
  25. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
  26. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.
  27. Steffen Nielsen & Kenneth Hansen & Rasmus Lund & Diana Moreno, 2020. "Unconventional Excess Heat Sources for District Heating in a National Energy System Context," Energies, MDPI, vol. 13(19), pages 1-18, September.
  28. Bellocchi, Sara & Guizzi, Giuseppe Leo & Manno, Michele & Pentimalli, Marzia & Salvatori, Marco & Zaccagnini, Alessandro, 2017. "Adsorbent materials for low-grade waste heat recovery: Application to industrial pasta drying processes," Energy, Elsevier, vol. 140(P1), pages 729-745.
  29. Lu, Hongyou & Price, Lynn & Zhang, Qi, 2016. "Capturing the invisible resource: Analysis of waste heat potential in Chinese industry," Applied Energy, Elsevier, vol. 161(C), pages 497-511.
  30. Kristina Lygnerud, 2019. "Business Model Changes in District Heating: The Impact of the Technology Shift from the Third to the Fourth Generation," Energies, MDPI, vol. 12(9), pages 1-16, May.
  31. Holzleitner, Marie & Moser, Simon & Puschnigg, Stefan, 2020. "Evaluation of the impact of the new Renewable Energy Directive 2018/2001 on third-party access to district heating networks to enforce the feed-in of industrial waste heat," Utilities Policy, Elsevier, vol. 66(C).
  32. Simon B. B. Solberg & Pauline Zimmermann & Øivind Wilhelmsen & Jacob J. Lamb & Robert Bock & Odne S. Burheim, 2022. "Heat to Hydrogen by Reverse Electrodialysis—Using a Non-Equilibrium Thermodynamics Model to Evaluate Hydrogen Production Concepts Utilising Waste Heat," Energies, MDPI, vol. 15(16), pages 1-22, August.
  33. Luo, Ao & Fang, Hao & Xia, Jianjun & Lin, Borong & jiang, Yi, 2017. "Mapping potentials of low-grade industrial waste heat in Northern China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 335-348.
  34. Edward Wheatcroft & Henry Wynn & Kristina Lygnerud & Giorgio Bonvicini & Daniela Leonte, 2020. "The Role of Low Temperature Waste Heat Recovery in Achieving 2050 Goals: A Policy Positioning Paper," Energies, MDPI, vol. 13(8), pages 1-19, April.
  35. Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
  36. Novosel, T. & Pukšec, T. & Duić, N. & Domac, J., 2020. "Heat demand mapping and district heating assessment in data-pour areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  37. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
  38. Pablo Donoso-García & Luis Henríquez-Vargas & Esteban Huerta, 2022. "Waste Heat Recovery from Air Using Porous Media and Conversion to Electricity," Energies, MDPI, vol. 15(15), pages 1-17, August.
  39. Clemens Huber & Saman Setoodeh Jahromy & Christian Jordan & Manfred Schreiner & Michael Harasek & Andreas Werner & Franz Winter, 2019. "Boric Acid: A High Potential Candidate for Thermochemical Energy Storage," Energies, MDPI, vol. 12(6), pages 1-17, March.
  40. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
  41. Liu, Shaolin & Ahmadi-Senichault, Azita & Pozzobon, Victor & Lachaud, Jean, 2024. "Multi-scale investigation of heat and momentum transfer in packed-bed TES systems up to 800 K," Applied Energy, Elsevier, vol. 366(C).
  42. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
  43. Jiang, Binfan & Xia, Dehong & Zhang, Huili & Pei, Hao & Liu, Xiangjun, 2020. "Effective waste heat recovery from industrial high-temperature granules: A Moving Bed Indirect Heat Exchanger with embedded agitation," Energy, Elsevier, vol. 208(C).
  44. Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.