IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics0360544220306083.html
   My bibliography  Save this article

Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry

Author

Listed:
  • Couvreur, Kenny
  • Beyne, Wim
  • De Paepe, Michel
  • Lecompte, Steven

Abstract

In energy intensive industries, organic Rankine cycles (ORC) can significantly increase energy efficiency and reduce carbon emissions by converting low- and medium-temperature residual heat to electricity. However, fluctuations in residual heat availability can negatively affect the operation of an ORC unit. By integrating intermediate thermal energy storage (TES) these fluctuations can be mitigated and part-load operation of the ORC unit can be avoided. In this paper, a solution for utilizing residual heat from flue gases fluctuating in both temperature and volume flow rate by means of an ORC is assessed. A TES system in the form of a pressurized hot water storage is modelled with the purpose of providing a steady thermal power and temperature to the ORC system. It is shown that thermal power variations are effectively attenuated by the thermal capacity of the water inside the TES system and thermal power to the ORC can be controlled by varying the mass flow rate to the ORC. Furthermore, a financial analysis including the main techno-economic parameters is presented, giving useful insights about the key factors influencing the feasibility of combined TES-ORC investment.

Suggested Citation

  • Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306083
    DOI: 10.1016/j.energy.2020.117501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220306083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    2. Dal Magro, Fabio & Savino, Stefano & Meneghetti, Antonella & Nardin, Gioacchino, 2017. "Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry," Energy, Elsevier, vol. 137(C), pages 1107-1118.
    3. Miró, Laia & Brückner, Sarah & Cabeza, Luisa F., 2015. "Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 847-855.
    4. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    5. Xu, H. & Lin, W.Y. & Dal Magro, F. & Li, T & Py, X. & Romagnoli, A., 2019. "Towards higher energy efficiency in future waste-to-energy plants with novel latent heat storage-based thermal buffer system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 324-337.
    6. Brueckner, Sarah & Miró, Laia & Cabeza, Luisa F. & Pehnt, Martin & Laevemann, Eberhard, 2014. "Methods to estimate the industrial waste heat potential of regions – A categorization and literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 164-171.
    7. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    8. Sung, Taehong & Yun, Eunkoo & Kim, Hyun Dong & Yoon, Sang Youl & Choi, Bum Seog & Kim, Kuisoon & Kim, Jangmok & Jung, Yang Beom & Kim, Kyung Chun, 2016. "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant," Applied Energy, Elsevier, vol. 183(C), pages 623-635.
    9. Pantaleo, Antonio M. & Fordham, Julia & Oyewunmi, Oyeniyi A. & De Palma, Pietro & Markides, Christos N., 2018. "Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC systems in the coffee roasting industry," Applied Energy, Elsevier, vol. 225(C), pages 782-796.
    10. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    11. Nardin, Gioacchino & Meneghetti, Antonella & Dal Magro, Fabio & Benedetti, Nicole, 2014. "PCM-based energy recovery from electric arc furnaces," Applied Energy, Elsevier, vol. 136(C), pages 947-955.
    12. Zhang, Chuan & Romagnoli, Alessandro & Kim, Je Young & Azli, Anis Athirah Mohd & Rajoo, Srithar & Lindsay, Andrew, 2017. "Implementation of industrial waste heat to power in Southeast Asia: an outlook from the perspective of market potentials, opportunities and success catalysts," Energy Policy, Elsevier, vol. 106(C), pages 525-535.
    13. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    14. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    15. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    16. Liu, Changwei & Gao, Tieyu, 2019. "Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy," Energy, Elsevier, vol. 171(C), pages 95-108.
    17. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    18. Bianchi, M. & De Pascale, A., 2011. "Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources," Applied Energy, Elsevier, vol. 88(5), pages 1500-1509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Orumiyehei, Aida & Ameri, Mehran & Nobakhti, Mohammad Hasan & Zareh, Masud & Edalati, Saeed, 2022. "Transient simulation of hybridized system: Waste heat recovery system integrated to ORC and Linear Fresnel collectors from energy and exergy viewpoint," Renewable Energy, Elsevier, vol. 185(C), pages 172-186.
    3. Erro, I. & Aranguren, P. & Alzuguren, I. & Chavarren, D. & Astrain, D., 2023. "Experimental analysis of one and two-stage thermoelectric heat pumps to enhance the performance of a thermal energy storage," Energy, Elsevier, vol. 285(C).
    4. Liu, Liuchen & Wu, Jinlu & Zhong, Fen & Gao, Naiping & Cui, Guomin, 2021. "Development of a novel cogeneration system by combing organic rankine cycle and heat pump cycle for waste heat recovery," Energy, Elsevier, vol. 217(C).
    5. Shiyang Teng & Yong-Qiang Feng & Tzu-Chen Hung & Huan Xi, 2021. "Multi-Objective Optimization and Fluid Selection of Different Cogeneration of Heat and Power Systems Based on Organic Rankine Cycle," Energies, MDPI, vol. 14(16), pages 1-22, August.
    6. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    3. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    4. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    5. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    6. Vojtěch Turek & Bohuslav Kilkovský & Ján Daxner & Dominika Babička Fialová & Zdeněk Jegla, 2024. "Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review," Energies, MDPI, vol. 17(9), pages 1-29, April.
    7. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    8. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    9. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    10. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    11. Miriam Benedetti & Daniele Dadi & Lorena Giordano & Vito Introna & Pasquale Eduardo Lapenna & Annalisa Santolamazza, 2021. "Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    12. Li, Zhi & Yu, Xiaoli & Wang, Lei & Lu, Yiji & Huang, Rui & Chang, Jinwei & Jiang, Ruicheng, 2020. "Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process," Energy, Elsevier, vol. 199(C).
    13. Pia Manz & Katerina Kermeli & Urban Persson & Marius Neuwirth & Tobias Fleiter & Wina Crijns-Graus, 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    14. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
    15. Luberti, Mauro & Gowans, Robert & Finn, Patrick & Santori, Giulio, 2022. "An estimate of the ultralow waste heat available in the European Union," Energy, Elsevier, vol. 238(PC).
    16. Tobias Popp & Andreas P. Weiß & Florian Heberle & Julia Winkler & Rüdiger Scharf & Theresa Weith & Dieter Brüggemann, 2021. "Experimental Characterization of an Adaptive Supersonic Micro Turbine for Waste Heat Recovery Applications," Energies, MDPI, vol. 15(1), pages 1-20, December.
    17. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    18. Jiang, Binfan & Xia, Dehong & Zhang, Huili & Pei, Hao & Liu, Xiangjun, 2020. "Effective waste heat recovery from industrial high-temperature granules: A Moving Bed Indirect Heat Exchanger with embedded agitation," Energy, Elsevier, vol. 208(C).
    19. Dokl, Monika & Gomilšek, Rok & Čuček, Lidija & Abikoye, Ben & Kravanja, Zdravko, 2022. "Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry," Energy, Elsevier, vol. 239(PE).
    20. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.