My bibliography
Save this item
Transfer learning for short-term wind speed prediction with deep neural networks
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Xin & Cao, Zheming & Zhang, Zijun, 2021. "Short-term predictions of multiple wind turbine power outputs based on deep neural networks with transfer learning," Energy, Elsevier, vol. 217(C).
- Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
- Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
- Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
- Liu, Hui & Chen, Chao, 2019. "Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction," Applied Energy, Elsevier, vol. 254(C).
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
- Dimitri P. Bertsekas, 2018. "Proximal algorithms and temporal difference methods for solving fixed point problems," Computational Optimization and Applications, Springer, vol. 70(3), pages 709-736, July.
- Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
- Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
- Yuquan Meng & Yuhang Yang & Haseung Chung & Pil-Ho Lee & Chenhui Shao, 2018. "Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
- Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
- Tao Fu & Tianci Zhang & Xueguan Song, 2022. "A Novel Hybrid Transfer Learning Framework for Dynamic Cutterhead Torque Prediction of the Tunnel Boring Machine," Energies, MDPI, vol. 15(8), pages 1-17, April.
- Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
- Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
- Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
- Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
- Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
- Morshedizadeh, Majid & Kordestani, Mojtaba & Carriveau, Rupp & Ting, David S.-K. & Saif, Mehrdad, 2017. "Application of imputation techniques and Adaptive Neuro-Fuzzy Inference System to predict wind turbine power production," Energy, Elsevier, vol. 138(C), pages 394-404.
- Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
- Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
- Liu, Chien-Liang & Chang, Tzu-Yu & Yang, Jie-Si & Huang, Kai-Bin, 2023. "A deep learning sequence model based on self-attention and convolution for wind power prediction," Renewable Energy, Elsevier, vol. 219(P1).
- Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
- Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
- Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
- Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
- Emeksiz, Cem & Tan, Mustafa, 2022. "Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)," Energy, Elsevier, vol. 249(C).
- Dong, Xiaochong & Sun, Yingyun & Dong, Lei & Li, Jian & Li, Yan & Di, Lei, 2023. "Transferable wind power probabilistic forecasting based on multi-domain adversarial networks," Energy, Elsevier, vol. 285(C).
- Nantian Huang & Chong Yuan & Guowei Cai & Enkai Xing, 2016. "Hybrid Short Term Wind Speed Forecasting Using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine," Energies, MDPI, vol. 9(12), pages 1-19, November.
- Huang, Jing & Yuan, Chengxu & Boland, John & Guo, Su & Liu, Weidong, 2024. "One-step ahead short-term hourly global solar radiation forecasting with a dynamical system based on classification of days," Renewable Energy, Elsevier, vol. 237(PB).
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Imran Shafi & Harris Khan & Muhammad Siddique Farooq & Isabel de la Torre Diez & Yini Miró & Juan Castanedo Galán & Imran Ashraf, 2023. "An Artificial Neural Network-Based Approach for Real-Time Hybrid Wind–Solar Resource Assessment and Power Estimation," Energies, MDPI, vol. 16(10), pages 1-18, May.
- Xu, Weifeng & Liu, Pan & Cheng, Lei & Zhou, Yong & Xia, Qian & Gong, Yu & Liu, Yini, 2021. "Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy," Renewable Energy, Elsevier, vol. 163(C), pages 772-782.
- Qinkai Han & Hao Wu & Tao Hu & Fulei Chu, 2018. "Short-Term Wind Speed Forecasting Based on Signal Decomposing Algorithm and Hybrid Linear/Nonlinear Models," Energies, MDPI, vol. 11(11), pages 1-23, November.
- Yang, Yang & Lang, Jin & Wu, Jian & Zhang, Yanyan & Su, Lijie & Song, Xiangman, 2022. "Wind speed forecasting with correlation network pruning and augmentation: A two-phase deep learning method," Renewable Energy, Elsevier, vol. 198(C), pages 267-282.
- Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Li, Wenzhe & Jia, Xiaodong & Li, Xiang & Wang, Yinglu & Lee, Jay, 2021. "A Markov model for short term wind speed prediction by integrating the wind acceleration information," Renewable Energy, Elsevier, vol. 164(C), pages 242-253.
- Yin, Hao & Ou, Zuhong & Fu, Jiajin & Cai, Yongfeng & Chen, Shun & Meng, Anbo, 2021. "A novel transfer learning approach for wind power prediction based on a serio-parallel deep learning architecture," Energy, Elsevier, vol. 234(C).
- Wellens, Arnoud P. & Udenio, Maxi & Boute, Robert N., 2022. "Transfer learning for hierarchical forecasting: Reducing computational efforts of M5 winning methods," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1482-1491.
- Liu, Jinfu & Ren, Guorui & Wan, Jie & Guo, Yufeng & Yu, Daren, 2016. "Variogram time-series analysis of wind speed," Renewable Energy, Elsevier, vol. 99(C), pages 483-491.
- Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
- Sang-yeon Lee & In-bok Lee & Uk-hyeon Yeo & Jun-gyu Kim & Rack-woo Kim, 2022. "Machine Learning Approach to Predict Air Temperature and Relative Humidity inside Mechanically and Naturally Ventilated Duck Houses: Application of Recurrent Neural Network," Agriculture, MDPI, vol. 12(3), pages 1-19, February.
- Li, Kangping & Li, Zhenghui & Huang, Chunyi & Ai, Qian, 2024. "Online transfer learning-based residential demand response potential forecasting for load aggregator," Applied Energy, Elsevier, vol. 358(C).
- Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
- Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
- Xue, Guixiang & Qi, Chengying & Li, Han & Kong, Xiangfei & Song, Jiancai, 2020. "Heating load prediction based on attention long short term memory: A case study of Xingtai," Energy, Elsevier, vol. 203(C).
- Yiyang Sun & Xiangwen Wang & Junjie Yang, 2022. "Modified Particle Swarm Optimization with Attention-Based LSTM for Wind Power Prediction," Energies, MDPI, vol. 15(12), pages 1-17, June.
- Linh Bui Duy & Ninh Nguyen Quang & Binh Doan Van & Eleonora Riva Sanseverino & Quynh Tran Thi Tu & Hang Le Thi Thuy & Sang Le Quang & Thinh Le Cong & Huyen Cu Thi Thanh, 2024. "Refining Long Short-Term Memory Neural Network Input Parameters for Enhanced Solar Power Forecasting," Energies, MDPI, vol. 17(16), pages 1-22, August.
- Wang, Shuai & Li, Bin & Li, Guanzheng & Yao, Bin & Wu, Jianzhong, 2021. "Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration," Applied Energy, Elsevier, vol. 292(C).
- Lu, Yakai & Tian, Zhe & Zhang, Qiang & Zhou, Ruoyu & Chu, Chengshan, 2021. "Data augmentation strategy for short-term heating load prediction model of residential building," Energy, Elsevier, vol. 235(C).
- Liu, Yanli & Wang, Junyi, 2022. "Transfer learning based multi-layer extreme learning machine for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 312(C).
- Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Han, Qinkai & Ma, Sai & Wang, Tianyang & Chu, Fulei, 2019. "Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Liang, Tao & Chai, Chunjie & Sun, Hexu & Tan, Jianxin, 2022. "Wind speed prediction based on multi-variable Capsnet-BILSTM-MOHHO for WPCCC," Energy, Elsevier, vol. 250(C).
- Li, Chaoshun & Tang, Geng & Xue, Xiaoming & Chen, Xinbiao & Wang, Ruoheng & Zhang, Chu, 2020. "The short-term interval prediction of wind power using the deep learning model with gradient descend optimization," Renewable Energy, Elsevier, vol. 155(C), pages 197-211.
- Ma, Jian & Shang, Pengchao & Zou, Xinyu & Ma, Ning & Ding, Yu & Sun, Jinwen & Cheng, Yujie & Tao, Laifa & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2021. "A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li-ion power batteries," Applied Energy, Elsevier, vol. 282(PA).
- Wang, Yun & Hu, Qinghua & Meng, Deyu & Zhu, Pengfei, 2017. "Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model," Applied Energy, Elsevier, vol. 208(C), pages 1097-1112.
- Lu, Peng & Ye, Lin & Pei, Ming & Zhao, Yongning & Dai, Binhua & Li, Zhuo, 2022. "Short-term wind power forecasting based on meteorological feature extraction and optimization strategy," Renewable Energy, Elsevier, vol. 184(C), pages 642-661.
- Du, Bin & Lund, Peter D. & Wang, Jun, 2021. "Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector," Energy, Elsevier, vol. 220(C).
- Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
- Xiaorui Shao & Chang-Soo Kim & Palash Sontakke, 2020. "Accurate Deep Model for Electricity Consumption Forecasting Using Multi-Channel and Multi-Scale Feature Fusion CNN–LSTM," Energies, MDPI, vol. 13(8), pages 1-22, April.
- Jing Wan & Jiehui Huang & Zhiyuan Liao & Chunquan Li & Peter X. Liu, 2022. "A Multi-View Ensemble Width-Depth Neural Network for Short-Term Wind Power Forecasting," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
- Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
- Qiaomu Zhu & Jinfu Chen & Lin Zhu & Xianzhong Duan & Yilu Liu, 2018. "Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach," Energies, MDPI, vol. 11(4), pages 1-18, March.
- Shi, Lingna & Li, Jiarong & Jiang, Haijun & Wang, Jinling, 2023. "Quasi-synchronization of multi-layer delayed neural networks with parameter mismatches via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.