IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v50y2013icp812-819.html
   My bibliography  Save this item

Blade design and performance testing of a small wind turbine rotor for low wind speed applications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yilmaz, Oktay, 2023. "Low-speed, low induction multi-blade rotor for energy efficient small wind turbines," Energy, Elsevier, vol. 282(C).
  2. Rocha, P.A. Costa & Rocha, H.H. Barbosa & Carneiro, F.O. Moura & Vieira da Silva, M.E. & Bueno, A. Valente, 2014. "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine," Energy, Elsevier, vol. 65(C), pages 412-418.
  3. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
  4. Navid Goudarzi & Kasra Mohammadi & Alexandra St. Pé & Ruben Delgado & Weidong Zhu, 2020. "Wind Resource Assessment and Economic Viability of Conventional and Unconventional Small Wind Turbines: A Case Study of Maryland," Energies, MDPI, vol. 13(22), pages 1-15, November.
  5. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
  6. Sutrisno & Sigit Iswahyudi & Setyawan Bekti Wibowo, 2018. "Dimensional Analysis of Power Prediction of a Real-Scale Wind Turbine Based on Wind-Tunnel Torque Measurement of Small-Scaled Models," Energies, MDPI, vol. 11(9), pages 1-13, September.
  7. Hércules Araújo Oliveira & José Gomes de Matos & Luiz Antonio de Souza Ribeiro & Osvaldo Ronald Saavedra & Jerson Rogério Pinheiro Vaz, 2023. "Assessment of Correction Methods Applied to BEMT for Predicting Performance of Horizontal-Axis Wind Turbines," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
  8. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
  9. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
  10. Zhiqiang, Li & Yunke, Wu & Jie, Hong & Zhihong, Zhang & Wenqi, Chen, 2018. "The study on performance and aerodynamics of micro counter-rotating HAWT," Energy, Elsevier, vol. 161(C), pages 939-954.
  11. Garzozi, A. & Greenblatt, D., 2022. "Exploiting the Coandă effect for wind-driven reciprocating RO desalination," Energy, Elsevier, vol. 238(PC).
  12. Ying, Pei & Chen, Yong Kang & Xu, Yi Geng, 2015. "An aerodynamic analysis of a novel small wind turbine based on impulse turbine principles," Renewable Energy, Elsevier, vol. 75(C), pages 37-43.
  13. Carré, Aurélien & Gasnier, Pierre & Roux, Émile & Tabourot, Laurent, 2022. "Extending the operating limits and performances of centimetre-scale wind turbines through biomimicry," Applied Energy, Elsevier, vol. 326(C).
  14. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
  15. Gamal Alkawsi & Yahia Baashar & Ammar Ahmed Alkahtani & Chin Wai Lim & Sieh Kiong Tiong & Mohammad Khudari, 2021. "Viability Assessment of Small-Scale On-Grid Wind Energy Generator for Households in Malaysia," Energies, MDPI, vol. 14(12), pages 1-18, June.
  16. Nikolić, Vlastimir & Sajjadi, Shahin & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko & Por, Lip Yee, 2016. "Design and state of art of innovative wind turbine systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 258-265.
  17. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
  18. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.
  19. Giahi, Mohammad Hossein & Jafarian Dehkordi, Ali, 2016. "Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation," Renewable Energy, Elsevier, vol. 97(C), pages 162-168.
  20. Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.
  21. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
  22. Grieser, Benno & Sunak, Yasin & Madlener, Reinhard, 2015. "Economics of small wind turbines in urban settings: An empirical investigation for Germany," Renewable Energy, Elsevier, vol. 78(C), pages 334-350.
  23. Han, Nuomin & Zhao, Dan & Schluter, Jorg U. & Goh, Ernest Seach & Zhao, He & Jin, Xiao, 2016. "Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow," Applied Energy, Elsevier, vol. 178(C), pages 672-680.
  24. Yossri, Widad & Ben Ayed, Samah & Abdelkefi, Abdessattar, 2021. "Airfoil type and blade size effects on the aerodynamic performance of small-scale wind turbines: Computational fluid dynamics investigation," Energy, Elsevier, vol. 229(C).
  25. Ahmadi Asl, Hamid & Kamali Monfared, Reza & Rad, Manouchehr, 2017. "Experimental investigation of blade number and design effects for a ducted wind turbine," Renewable Energy, Elsevier, vol. 105(C), pages 334-343.
  26. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
  27. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
  28. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
  29. Chiarelli, A. & Dawson, A.R. & García, A., 2015. "Parametric analysis of energy harvesting pavements operated by air convection," Applied Energy, Elsevier, vol. 154(C), pages 951-958.
  30. Talavera, Miguel & Shu, Fangjun, 2017. "Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel," Renewable Energy, Elsevier, vol. 109(C), pages 363-371.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.