IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022118.html
   My bibliography  Save this article

Exploiting the Coandă effect for wind-driven reciprocating RO desalination

Author

Listed:
  • Garzozi, A.
  • Greenblatt, D.

Abstract

The urgent need for fresh water remains a strong driver for reverse-osmosis (RO) desalination, but present-day systems are energy-inefficient and produce significant green-house gas emissions. This motivated our research, which introduces and investigates a novel concept for wind-driven RO desalination. It is based on the Coandă effect, applied periodically by blowing slots on a spring-stabilized vertical cylinder, to produce reciprocating motion that drives RO piston pumps. The Coandă-based Reciprocating (CoRe) system converts wind energy directly to mechanical pumping energy thereby eliminating generator and motor inefficiencies. A small-scale (2-m high) system was constructed and evaluated in an open-jet wind tunnel. It delivered 2–6 bars of water pressure with a net power efficiency of up to 4% depending on wind speed and circulation control parameters. A mathematical model of the system produced excellent correspondence with the experimental data. It was determined that the experimental setup and slot design biased the results negatively and model predictions based on published Coandă data indicated net power efficiencies up to 20%. It was also determined that the slot design details had a decisive effect on performance.

Suggested Citation

  • Garzozi, A. & Greenblatt, D., 2022. "Exploiting the Coandă effect for wind-driven reciprocating RO desalination," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022118
    DOI: 10.1016/j.energy.2021.121963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Ronit K. & Ahmed, M. Rafiuddin, 2013. "Blade design and performance testing of a small wind turbine rotor for low wind speed applications," Renewable Energy, Elsevier, vol. 50(C), pages 812-819.
    2. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    3. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    4. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    5. Battisti, L. & Benini, E. & Brighenti, A. & Dell’Anna, S. & Raciti Castelli, M., 2018. "Small wind turbine effectiveness in the urban environment," Renewable Energy, Elsevier, vol. 129(PA), pages 102-113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    2. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    3. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    5. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    6. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    7. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    8. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    9. Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
    10. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    11. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    12. Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).
    13. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    14. Primitivo Díaz & Marco Pérez-Cisneros & Erik Cuevas & Omar Avalos & Jorge Gálvez & Salvador Hinojosa & Daniel Zaldivar, 2018. "An Improved Crow Search Algorithm Applied to Energy Problems," Energies, MDPI, vol. 11(3), pages 1-22, March.
    15. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    16. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    17. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    18. Oladotun Victor Ogunyemi & Ibrahim Adeiza Ahmed & Omotosho Abdulqudus Ajibola, 2024. "Innovative Systems for Renewable Energy Integration: Harnessing AI, Blockchain, and Hybrid Technologies – A Review," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(10), pages 603-634, October.
    19. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    20. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.