IDEAS home Printed from https://ideas.repec.org/r/eee/reensy/v212y2021ics095183202100106x.html
   My bibliography  Save this item

Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nguyen, Van-Thai & Do, Phuc & Vosin, Alexandre & Iung, Benoit, 2022. "Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  2. Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  3. Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
  4. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  5. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  6. Cheng, Jianda & Cheng, Minghui & Liu, Yan & Wu, Jun & Li, Wei & Frangopol, Dan M., 2024. "Knowledge transfer for adaptive maintenance policy optimization in engineering fleets based on meta-reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  7. Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
  8. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
  9. Hendradewa, Andrie Pasca & Yin, Shen, 2025. "Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  10. Mikhail, Mina & Ouali, Mohamed-Salah & Yacout, Soumaya, 2024. "A data-driven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  11. Guo, Yuanyuan & Sun, Youchao & Si, Qingmin & Guo, Xinyao & Chen, Nongtian, 2025. "Probabilistic risk assessment of civil aircraft associated failures under condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  12. Zheng, Meimei & Su, Zhiyun & Wang, Dong & Pan, Ershun, 2024. "Joint maintenance and spare part ordering from multiple suppliers for multicomponent systems using a deep reinforcement learning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  13. Anwar, Ghazanfar Ali & Zhang, Xiaoge, 2024. "Deep reinforcement learning for intelligent risk optimization of buildings under hazard," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  14. Kim, Seokgoo & Choi, Joo-Ho & Kim, Nam Ho, 2022. "Inspection schedule for prognostics with uncertainty management," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
  15. Ferreira Neto, Waldomiro Alves & Virgínio Cavalcante, Cristiano Alexandre & Do, Phuc, 2024. "Deep reinforcement learning for maintenance optimization of a scrap-based steel production line," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  16. Pliego Marugán, Alberto & Pinar-Pérez, Jesús M. & García Márquez, Fausto Pedro, 2024. "A reinforcement learning agent for maintenance of deteriorating systems with increasingly imperfect repairs," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  17. da Costa, Paulo & Verleijsdonk, Peter & Voorberg, Simon & Akcay, Alp & Kapodistria, Stella & van Jaarsveld, Willem & Zhang, Yingqian, 2023. "Policies for the dynamic traveling maintainer problem with alerts," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1141-1152.
  18. Kıvanç, İpek & Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2022. "Maintenance policy analysis of the regenerative air heater system using factored POMDPs," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  19. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
  20. Ashmita Bhattacharya & Konstantinos G. Papakonstantinou & Gordon P. Warn & Lauren McPhillips & Melissa M. Bilec & Chris E. Forest & Rahaf Hasan & Digant Chavda, 2025. "Optimal life-cycle adaptation of coastal infrastructure under climate change," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  21. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  22. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  23. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  24. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  25. Arcieri, Giacomo & Hoelzl, Cyprien & Schwery, Oliver & Straub, Daniel & Papakonstantinou, Konstantinos G. & Chatzi, Eleni, 2023. "Bridging POMDPs and Bayesian decision making for robust maintenance planning under model uncertainty: An application to railway systems," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
  26. Zhang, Qin & Liu, Yu & Xiang, Yisha & Xiahou, Tangfan, 2024. "Reinforcement learning in reliability and maintenance optimization: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.