Author
Listed:
- Ashmita Bhattacharya
(The Pennsylvania State University)
- Konstantinos G. Papakonstantinou
(The Pennsylvania State University)
- Gordon P. Warn
(The Pennsylvania State University)
- Lauren McPhillips
(The Pennsylvania State University)
- Melissa M. Bilec
(University of Pittsburgh)
- Chris E. Forest
(The Pennsylvania State University)
- Rahaf Hasan
(University of Pittsburgh)
- Digant Chavda
(The Pennsylvania State University)
Abstract
Climate change-related risk mitigation is typically addressed using cost-benefit analysis that evaluates mitigation strategies against a wide range of simulated scenarios and identifies a static policy to be implemented, without considering future observations. Due to the substantial uncertainties inherent in climate projections, this identified policy will likely be sub-optimal with respect to the actual climate trajectory that evolves in time. In this work, we thus formulate climate risk management as a dynamic decision-making problem based on Markov Decision Processes (MDPs) and Partially Observable MDPs (POMDPs), taking real-time data into account for evaluating the evolving conditions and related model uncertainties, in order to select the best possible life-cycle actions in time, with global optimality guarantees for the formulated optimization problem. The framework is developed for coastal adaptation applications, considering a wide variety of possible action types, including various forms of nature-based infrastructure. Related environmental impacts of carbon emissions and uptake are also incorporated, and social cost of carbon implications are discussed, together with several future directions and supported features.
Suggested Citation
Ashmita Bhattacharya & Konstantinos G. Papakonstantinou & Gordon P. Warn & Lauren McPhillips & Melissa M. Bilec & Chris E. Forest & Rahaf Hasan & Digant Chavda, 2025.
"Optimal life-cycle adaptation of coastal infrastructure under climate change,"
Nature Communications, Nature, vol. 16(1), pages 1-18, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55679-9
DOI: 10.1038/s41467-024-55679-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55679-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.