IDEAS home Printed from https://ideas.repec.org/r/eee/jmvana/v100y2009i9p2044-2054.html
   My bibliography  Save this item

On asymptotic theory for multivariate GARCH models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Thieu, Le Quyen, 2016. "Variance targeting estimation of the BEKK-X model," MPRA Paper 75572, University Library of Munich, Germany.
  2. Guochang Wang & Wai Keung Li & Ke Zhu, 2018. "New HSIC-based tests for independence between two stationary multivariate time series," Papers 1804.09866, arXiv.org.
  3. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
  4. Fengler, Matthias & Polivka, Jeannine, 2022. "Structural Volatility Impulse Response Analysis," Economics Working Paper Series 2211, University of St. Gallen, School of Economics and Political Science, revised Nov 2022.
  5. Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
  6. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
  7. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
  8. Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
  9. Dark, Jonathan, 2024. "An adaptive long memory conditional correlation model," Journal of Empirical Finance, Elsevier, vol. 75(C).
  10. Marco Barassi & Lajos Horváth & Yuqian Zhao, 2020. "Change‐Point Detection in the Conditional Correlation Structure of Multivariate Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 340-349, April.
  11. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
  12. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
  13. Katsiampa, Paraskevi & Yarovaya, Larisa & Zięba, Damian, 2022. "High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
  14. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
  15. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
  16. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
  17. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
  18. Resende, Paulo Angelo Alves & Dorea, Chang Chung Yu, 2016. "Model identification using the Efficient Determination Criterion," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 229-244.
  19. Chang, Jinyuan & Zhang, Henry & Yang, Lin & Yao, Qiwei, 2023. "Modelling matrix time series via a tensor CP-decomposition," LSE Research Online Documents on Economics 117644, London School of Economics and Political Science, LSE Library.
  20. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
  21. Dong Hwan Oh & Andrew J. Patton, 2021. "Dynamic Factor Copula Models with Estimated Cluster Assignments," Finance and Economics Discussion Series 2021-029r1, Board of Governors of the Federal Reserve System (U.S.), revised 06 May 2022.
  22. Chen, Xiaohong & Huang, Zhuo & Yi, Yanping, 2021. "Efficient estimation of multivariate semi-nonparametric GARCH filtered copula models," Journal of Econometrics, Elsevier, vol. 222(1), pages 484-501.
  23. Serletis, Apostolos & Xu, Libo, 2019. "The ethanol mandate and crude oil and biofuel agricultural commodity price dynamics," Journal of Commodity Markets, Elsevier, vol. 15(C), pages 1-1.
  24. Asai, M. & Chang, C-L. & McAleer, M.J. & Pauwels, L., 2018. "Asymptotic Theory for Rotated Multivariate GARCH Models," Econometric Institute Research Papers EI2018-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  25. Hafner, Christian M. & Herwartz, Helmut & Maxand, Simone, 2022. "Identification of structural multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 212-227.
  26. Donghang Luo & Ke Zhu & Huan Gong & Dong Li, 2020. "Testing error distribution by kernelized Stein discrepancy in multivariate time series models," Papers 2008.00747, arXiv.org.
  27. Thieu, Le Quyen, 2016. "Equation by equation estimation of the semi-diagonal BEKK model with covariates," MPRA Paper 75582, University Library of Munich, Germany.
  28. Billio, Monica & Caporin, Massimiliano & Frattarolo, Lorenzo & Pelizzon, Loriana, 2023. "Networks in risk spillovers: A multivariate GARCH perspective," Econometrics and Statistics, Elsevier, vol. 28(C), pages 1-29.
  29. Cavicchioli, Maddalena, 2023. "Statistical analysis of Markov switching vector autoregression models with endogenous explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
  30. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2022. "Regularized estimation of high‐dimensional vector autoregressions with weakly dependent innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 532-557, July.
  31. Fengler, Matthias & Polivka, Jeannine, 2021. "Proxy-identification of a structural MGARCH model for asset returns," Economics Working Paper Series 2103, University of St. Gallen, School of Economics and Political Science, revised Oct 2024.
  32. Xiaohong Chen & Zhuo Huang & Yanping Yi, 2019. "Efficient Estimation of Multivariate Semi-nonparametric GARCH Filtered Copula Models," Cowles Foundation Discussion Papers 2215, Cowles Foundation for Research in Economics, Yale University.
  33. Chang, Jinyuan & Hu, Qiao & Liu, Cheng & Tang, Cheng Yong, 2024. "Optimal covariance matrix estimation for high-dimensional noise in high-frequency data," Journal of Econometrics, Elsevier, vol. 239(2).
  34. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  35. Fengler, Matthias & Polivka, Jeanine, 2022. "Identifying Structural Shocks to Volatility through a Proxy-MGARCH Model," VfS Annual Conference 2022 (Basel): Big Data in Economics 264010, Verein für Socialpolitik / German Economic Association.
  36. Stefano Grassi & Francesco Violante, 2021. "Asset Pricing Using Block-Cholesky GARCH and Time-Varying Betas," Working Papers 2021-05, Center for Research in Economics and Statistics.
  37. Chang, Jinyuan & Jiang, Qing & Shao, Xiaofeng, 2023. "Testing the martingale difference hypothesis in high dimension," Journal of Econometrics, Elsevier, vol. 235(2), pages 972-1000.
  38. Markus J. Fülle & Helmut Herwartz, 2024. "Predicting tail risks by a Markov switching MGARCH model with varying copula regimes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2163-2186, September.
  39. Fengler, Matthias R. & Herwartz, Helmut, 2015. "Measuring spot variance spillovers when (co)variances are time-varying - the case of multivariate GARCH models," MPRA Paper 72197, University Library of Munich, Germany, revised 10 Jun 2016.
  40. Ihsan Erdem Kayral & Ahmed Jeribi & Sahar Loukil, 2023. "Are Bitcoin and Gold a Safe Haven during COVID-19 and the 2022 Russia–Ukraine War?," JRFM, MDPI, vol. 16(4), pages 1-22, April.
  41. Tomasz Woźniak, 2018. "Granger-causal analysis of GARCH models: A Bayesian approach," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 325-346, April.
  42. Asai Manabu & So Mike K. P., 2023. "Realized BEKK-CAW Models," Journal of Time Series Econometrics, De Gruyter, vol. 15(1), pages 49-77, January.
  43. Manabu Asai & Chia-Lin Chang & Michael McAleer & Laurent Pauwels, 2021. "Asymptotic and Finite Sample Properties for Multivariate Rotated GARCH Models," Econometrics, MDPI, vol. 9(2), pages 1-21, May.
  44. Herwartz, Helmut & Roestel, Jan, 2022. "Asset prices, financial amplification and monetary policy: Structural evidence from an identified multivariate GARCH model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
  45. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
  46. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity and (Non-) Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model," JRFM, MDPI, vol. 12(2), pages 1-7, April.
  47. Herwartz, Helmut & Roestel, Jan, 2018. "A structural approach to identify financial transmission in distinguished scenarios of crises," Economics Working Papers 2018-08, Christian-Albrechts-University of Kiel, Department of Economics.
  48. Cheng Yu & Dong Li & Feiyu Jiang & Ke Zhu, 2023. "Matrix GARCH Model: Inference and Application," Papers 2306.05169, arXiv.org.
  49. Hafner, Christian & Herwartz, Helmut, 2022. "Asymmetric volatility impulse response functions," LIDAM Discussion Papers ISBA 2022037, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  50. Herwartz Helmut & Roestel Jan, 2018. "Local/import – and foreign currency prices: inflation, uncertainty and pass through endogeneity," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(3), pages 1-17, June.
  51. Oh, Dong Hwan & Patton, Andrew J., 2023. "Dynamic factor copula models with estimated cluster assignments," Journal of Econometrics, Elsevier, vol. 237(2).
  52. Hetland, Simon & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2023. "Dynamic conditional eigenvalue GARCH," Journal of Econometrics, Elsevier, vol. 237(2).
  53. Xiaochun Liu, 2018. "Structural Volatility Impulse Response Function and Asymptotic Inference," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 316-339.
  54. Asai, Manabu, 2023. "Feasible Panel GARCH Models: Variance-Targeting Estimation and Empirical Application," Econometrics and Statistics, Elsevier, vol. 25(C), pages 23-38.
  55. Poloni, Federico & Sbrana, Giacomo, 2014. "Feasible generalized least squares estimation of multivariate GARCH(1, 1) models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 151-159.
  56. Yuanyuan Zhang & Rong Liu & Qin Shao & Lijian Yang, 2020. "Two‐Step Estimation for Time Varying Arch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 551-570, July.
  57. Hafner, Christian M. & Herwartz, Helmut, 2023. "Asymmetric volatility impulse response functions," Economics Letters, Elsevier, vol. 222(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.