IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i6p2163-2186.html
   My bibliography  Save this article

Predicting tail risks by a Markov switching MGARCH model with varying copula regimes

Author

Listed:
  • Markus J. Fülle
  • Helmut Herwartz

Abstract

To improve the dynamic assessment of risks of speculative assets, we apply a Markov switching MGARCH approach to portfolio risk forecasting. More specifically, we take advantage of the flexible Markov switching copula multivariate GARCH (MS‐C‐MGARCH) model of Fülle and Herwartz (2022). As an empirical illustration, we take the perspective of a risk‐averse agent and employ the suggested model for assessments of future risks of portfolios composed of a high‐yield equity index (S&P 500) and two safe‐haven investment instruments (i.e., Gold and US Treasury Bond Futures). We follow recent suggestions to employ the expected shortfall as a prime assessment of tail risks. To accurately evaluate the merits of the new model, we back‐test the risk forecasting for daily returns over 10 years for heterogeneous market environments including, for example, the COVID‐19 pandemic. We find that the MS‐C‐MGARCH model outperforms benchmark volatility models (MGARCH, C‐MGARCH) in predicting both value‐at‐risk and expected shortfall. The superiority of the MS‐C‐MGARCH model becomes stronger, when the share of comparably risky assets in the portfolio is relatively large.

Suggested Citation

  • Markus J. Fülle & Helmut Herwartz, 2024. "Predicting tail risks by a Markov switching MGARCH model with varying copula regimes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2163-2186, September.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:2163-2186
    DOI: 10.1002/for.3117
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3117
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:2163-2186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.