IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v395y2014icp499-510.html
   My bibliography  Save this article

Emerging markets in the global economic network: Real(ly) decoupling?

Author

Listed:
  • Trancoso, Tiago

Abstract

We evaluate the degree of business cycle interdependence in the global economic network, focusing on the hypothesis that emergent market (EM) economies have decoupled from advanced economies in the recent period of globalization. We employ a novel methodological approach to the study of business cycles synchronization that combines network analysis and dynamic correlations. We find a process of increasing transnational interdependence within and across all economic development groups. Our results suggest that EM do not form a cohesive group and support the view of an increasingly multipolar and interdependent global economic network.

Suggested Citation

  • Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
  • Handle: RePEc:eee:phsmap:v:395:y:2014:i:c:p:499-510
    DOI: 10.1016/j.physa.2013.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113010030
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Canova, Fabio & Ciccarelli, Matteo & Ortega, Eva, 2007. "Similarities and convergence in G-7 cycles," Journal of Monetary Economics, Elsevier, vol. 54(3), pages 850-878, April.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Helmut Lütkepohl, 1985. "Comparison Of Criteria For Estimating The Order Of A Vector Autoregressive Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 6(1), pages 35-52, January.
    4. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & N. Mantegna, Rosario, 2003. "Degree stability of a minimum spanning tree of price return and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 66-73.
    5. Levy Yeyati, Eduardo & Williams, Tomas, 2012. "Emerging economies in the 2000s: Real decoupling and financial recoupling," Journal of International Money and Finance, Elsevier, vol. 31(8), pages 2102-2126.
    6. Y. K. Tse & A. K. C. Tsui, 1999. "A Note on Diagnosing Multivariate Conditional Heteroscedasticity Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(6), pages 679-691, November.
    7. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    8. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(1), pages 70-86, February.
    9. David Matesanz & Benno Torgler & Germán Dabat & Guillermo J. Ortega, 2014. "Co-movements in commodity prices: a note based on network analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 45(S1), pages 13-21, November.
    10. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    11. Dias, João, 2012. "Sovereign debt crisis in the European Union: A minimum spanning tree approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2046-2055.
    12. Fidrmuc, Jarko & Korhonen, Iikka, 2006. "Meta-analysis of the business cycle correlation between the euro area and the CEECs," Journal of Comparative Economics, Elsevier, vol. 34(3), pages 518-537, September.
    13. Hansen, Bruce E, 1997. "Approximate Asymptotic P Values for Structural-Change Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 60-67, January.
    14. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    15. Keskin, Mustafa & Deviren, Bayram & Kocakaplan, Yusuf, 2011. "Topology of the correlation networks among major currencies using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 719-730.
    16. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    17. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    18. Inklaar, Robert & Jong-A-Pin, Richard & de Haan, Jakob, 2008. "Trade and business cycle synchronization in OECD countries--A re-examination," European Economic Review, Elsevier, vol. 52(4), pages 646-666, May.
    19. Naylor, Michael J. & Rose, Lawrence C. & Moyle, Brendan J., 2007. "Topology of foreign exchange markets using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 199-208.
    20. Sybille Lehwald, 2013. "Has the Euro changed business cycle synchronization? Evidence from the core and the periphery," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 40(4), pages 655-684, November.
    21. Massimiliano Caporin & Michael McAleer, 2008. "Scalar BEKK and indirect DCC," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 537-549.
    22. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    23. Iulia Siedschlag & Gabriele Tondl, 2011. "Regional output growth synchronisation with the Euro Area," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 38(2), pages 203-221, May.
    24. Gilmore, Claire G. & Lucey, Brian M. & Boscia, Marian W., 2010. "Comovements in government bond markets: A minimum spanning tree analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4875-4886.
    25. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    26. Nikolaos Antonakakis & Johann Scharler, 2012. "The synchronization of GDP growth in the G7 during US recessions," Applied Economics Letters, Taylor & Francis Journals, vol. 19(1), pages 7-11, January.
    27. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    28. Gilmore, Claire G. & Lucey, Brian M. & Boscia, Marian, 2008. "An ever-closer union? Examining the evolution of linkages of European equity markets via minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(25), pages 6319-6329.
    29. Eryiğit, Mehmet & Eryiğit, Resul, 2009. "Network structure of cross-correlations among the world market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3551-3562.
    30. Yung Chul Park & Kwanho Shin, 2009. "Economic Integration and Changes in the Business Cycle in East Asia: Is the Region Decoupling from the Rest of the World?-super-," Asian Economic Papers, MIT Press, vol. 8(1), pages 107-140, Winter.
    31. Glenn Otto & Graham Voss & Luke Willard, 2001. "Understanding OECD Output Correlations," RBA Research Discussion Papers rdp2001-05, Reserve Bank of Australia.
    32. Jakob De Haan & Robert Inklaar & Richard Jong‐A‐Pin, 2008. "Will Business Cycles In The Euro Area Converge? A Critical Survey Of Empirical Research," Journal of Economic Surveys, Wiley Blackwell, vol. 22(2), pages 234-273, April.
    33. Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
    34. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    35. Coelho, Ricardo & Gilmore, Claire G. & Lucey, Brian & Richmond, Peter & Hutzler, Stefan, 2007. "The evolution of interdependence in world equity markets—Evidence from minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 455-466.
    36. Tiago Trancoso, 2013. "Global macroeconomic interdependence: a minimum spanning tree approach," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 5(1), pages 179-189, June.
    37. Mizuno, Takayuki & Takayasu, Hideki & Takayasu, Misako, 2006. "Correlation networks among currencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 336-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang-Jin Wang & Chi Xie & Peng Zhang & Feng Han & Shou Chen, 2014. "Dynamics of Foreign Exchange Networks: A Time-Varying Copula Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-11, May.
    2. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    3. Changmo Ahn & Gyemin Lee & Dongkoo Chang, 2014. "The Global Financial Crisis and Transmission Channels: An International Network Analysis," Working Papers wp07, South East Asian Central Banks (SEACEN) Research and Training Centre.
    4. Yao, Can-Zhong & Lin, Ji-Nan & Lin, Qing-Wen & Zheng, Xu-Zhou & Liu, Xiao-Feng, 2016. "A study of causality structure and dynamics in industrial electricity consumption based on Granger network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 297-320.
    5. Haiming Long & Ji Zhang & Nengyu Tang, 2017. "Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    6. Jun, Doobae & Ahn, Changmo & Kim, Gwangil, 2017. "Analysis of the global financial crisis using statistical moments," Finance Research Letters, Elsevier, vol. 21(C), pages 47-52.
    7. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    8. Yao, Can-Zhong & Lin, Ji-Nan & Liu, Xiao-Feng, 2016. "A study of hierarchical structure on South China industrial electricity-consumption correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 129-145.
    9. Majapa, Mohamed & Gossel, Sean Joss, 2016. "Topology of the South African stock market network across the 2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 35-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago Trancoso, 2013. "Global macroeconomic interdependence: a minimum spanning tree approach," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 5(1), pages 179-189, June.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Kantar, Ersin & Keskin, Mustafa, 2013. "The relationships between electricity consumption and GDP in Asian countries, using hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5678-5684.
    4. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    5. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    6. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    7. Deviren, Seyma Akkaya & Deviren, Bayram, 2016. "The relationship between carbon dioxide emission and economic growth: Hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 429-439.
    8. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    9. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    10. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    11. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    12. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    13. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    14. Samitas, Aristeidis & Kampouris, Elias & Polyzos, Stathis, 2022. "Covid-19 pandemic and spillover effects in stock markets: A financial network approach," International Review of Financial Analysis, Elsevier, vol. 80(C).
    15. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    16. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    17. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    18. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    19. Samitas, Aristeidis & Kampouris, Elias & Kenourgios, Dimitris, 2020. "Machine learning as an early warning system to predict financial crisis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    20. Katsiampa, Paraskevi & Yarovaya, Larisa & Zięba, Damian, 2022. "High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:395:y:2014:i:c:p:499-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.