IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v79y2022ics1042443122000610.html
   My bibliography  Save this article

High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis

Author

Listed:
  • Katsiampa, Paraskevi
  • Yarovaya, Larisa
  • Zięba, Damian

Abstract

In this paper, we analyse co-movements and correlations between Bitcoin and thirty-one of the most-tradable crypto assets using high-frequency data for the period from January 2019 to December 2020. We apply the Diagonal-BEKK model to data from the pre-COVID and COVID-19 periods, and identify significant changes in patterns of co-movements and correlations during the pandemic period. We also employ the Minimum Spanning Tree (MST) and Planar Maximally Filtered Graph (PMFG) methods to study the changes of the crypto asset network structure after the COVID-19 outbreak. While the influential role of Bitcoin in the digital asset ecosystem has been confirmed, our novel findings reveal that due to recent developments in the blockchain ecosystem, crypto assets that can be categorised as dApps and protocols have become more attractive to investors than pure cryptocurrencies.

Suggested Citation

  • Katsiampa, Paraskevi & Yarovaya, Larisa & Zięba, Damian, 2022. "High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
  • Handle: RePEc:eee:intfin:v:79:y:2022:i:c:s1042443122000610
    DOI: 10.1016/j.intfin.2022.101578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443122000610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2022.101578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    2. Patel, Ritesh & Goodell, John W. & Oriani, Marco Ercole & Paltrinieri, Andrea & Yarovaya, Larisa, 2022. "A bibliometric review of financial market integration literature," International Review of Financial Analysis, Elsevier, vol. 80(C).
    3. Benedetti, Hugo & Nikbakht, Ehsan, 2021. "Returns and network growth of digital tokens after cross-listings," Journal of Corporate Finance, Elsevier, vol. 66(C).
    4. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    5. Davidovic, Milivoje, 2021. "From pandemic to financial contagion: High-frequency risk metrics and Bayesian volatility analysis," Finance Research Letters, Elsevier, vol. 42(C).
    6. Hu, Bill & McInish, Thomas & Miller, Jonathan & Zeng, Li, 2019. "Intraday price behavior of cryptocurrencies," Finance Research Letters, Elsevier, vol. 28(C), pages 337-342.
    7. Iwanicz-Drozdowska, Małgorzata & Rogowicz, Karol & Kurowski, Łukasz & Smaga, Paweł, 2021. "Two decades of contagion effect on stock markets: Which events are more contagious?," Journal of Financial Stability, Elsevier, vol. 55(C).
    8. Chang, Chia-Lin & McAleer, Michael, 2019. "The fiction of full BEKK: Pricing fossil fuels and carbon emissions," Finance Research Letters, Elsevier, vol. 28(C), pages 11-19.
    9. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    10. Massimiliano Caporin & Michael McAleer, 2008. "Scalar BEKK and indirect DCC," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 537-549.
    11. Chan, Stephen & Chu, Jeffrey & Zhang, Yuanyuan & Nadarajah, Saralees, 2022. "An extreme value analysis of the tail relationships between returns and volumes for high frequency cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    12. Nguyen, Linh Hoang & Chevapatrakul, Thanaset & Yao, Kai, 2020. "Investigating tail-risk dependence in the cryptocurrency markets: A LASSO quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 333-355.
    13. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    14. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things you should know about DCC," Tinbergen Institute Discussion Papers 13-048/III, Tinbergen Institute.
    15. Franklin Allen & Douglas Gale, 2000. "Financial Contagion," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 1-33, February.
    16. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    17. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2021. "Bitcoin-energy markets interrelationships - New evidence," Resources Policy, Elsevier, vol. 70(C).
    18. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    19. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity, and (Non-) Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model," JRFM, MDPI, vol. 12(2), pages 1-9, April.
    20. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Pawe{l} O'swik{e}cimka & Tomasz Stanisz & Marcin Wk{a}torek, 2020. "Complexity in economic and social systems: cryptocurrency market at around COVID-19," Papers 2009.10030, arXiv.org.
    21. Broadstock, David C. & Filis, George, 2014. "Oil price shocks and stock market returns: New evidence from the United States and China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 417-433.
    22. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
    23. David E. Allen & Michael McAleer, 2018. "Theoretical and Empirical Differences between Diagonal and Full BEKK for Risk Management," Energies, MDPI, vol. 11(7), pages 1-19, June.
    24. Wang, Jingjing & Wang, Xiaoyang, 2021. "COVID-19 and financial market efficiency: Evidence from an entropy-based analysis," Finance Research Letters, Elsevier, vol. 42(C).
    25. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity and (Non-) Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model," JRFM, MDPI, vol. 12(2), pages 1-7, April.
    26. Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
    27. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know about the Dynamic Conditional Correlation Representation," Econometrics, MDPI, vol. 1(1), pages 1-12, June.
    28. Boldanov, Rustam & Degiannakis, Stavros & Filis, George, 2016. "Time-varying correlation between oil and stock market volatilities: Evidence from oil-importing and oil-exporting countries," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 209-220.
    29. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    30. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    31. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    32. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    33. Katsiampa, Paraskevi & Corbet, Shaen & Lucey, Brian, 2019. "High frequency volatility co-movements in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 35-52.
    34. Zięba, Damian & Kokoszczyński, Ryszard & Śledziewska, Katarzyna, 2019. "Shock transmission in the cryptocurrency market. Is Bitcoin the most influential?," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 102-125.
    35. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    36. Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
    37. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    38. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    39. Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen, 2019. "The adaptive market hypothesis in the high frequency cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 221-231.
    40. Corbet, Shaen & Larkin, Charles & Lucey, Brian & Meegan, Andrew & Yarovaya, Larisa, 2020. "Cryptocurrency reaction to FOMC Announcements: Evidence of heterogeneity based on blockchain stack position," Journal of Financial Stability, Elsevier, vol. 46(C).
    41. Wang, Jinghua & Ngene, Geoffrey M., 2020. "Does Bitcoin still own the dominant power? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    42. Chemkha, Rahma & BenSaïda, Ahmed & Ghorbel, Ahmed, 2021. "Connectedness between cryptocurrencies and foreign exchange markets: Implication for risk management," Journal of Multinational Financial Management, Elsevier, vol. 59(C).
    43. Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 78(C).
    44. Yarovaya, Larisa & Zięba, Damian, 2022. "Intraday volume-return nexus in cryptocurrency markets: Novel evidence from cryptocurrency classification," Research in International Business and Finance, Elsevier, vol. 60(C).
    45. Quiroga-Garcia, Raquel & Pariente-Martinez, Natalia & Arenas-Parra, Mar, 2022. "Evidence for round number effects in cryptocurrencies prices," Finance Research Letters, Elsevier, vol. 47(PB).
    46. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Larkin, Charles & Oxley, Les, 2020. "Any port in a storm: Cryptocurrency safe-havens during the COVID-19 pandemic," Economics Letters, Elsevier, vol. 194(C).
    47. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1554-1583, December.
    48. Gradojevic, Nikola & Tsiakas, Ilias, 2021. "Volatility cascades in cryptocurrency trading," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 252-265.
    49. Zhang, Yuanyuan & Chan, Stephen & Chu, Jeffrey & Nadarajah, Saralees, 2019. "Stylised facts for high frequency cryptocurrency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 598-612.
    50. Morales, Lucía & Andreosso-O'Callaghan, Bernadette, 2014. "The global financial crisis: World market or regional contagion effects?," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 108-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).
    2. Hsu, Shu-Han & Sheu, Chwen & Yoon, Jiho, 2021. "Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    3. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    4. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    5. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity, and (Non-) Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model," JRFM, MDPI, vol. 12(2), pages 1-9, April.
    6. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    7. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    8. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    9. McAleer, M.J., 2014. "Discussion of “Principal Volatility Component Analysis” by Yu-Pin Hu and Ruey Tsay," Econometric Institute Research Papers EI 2014-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity and (Non-) Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model," JRFM, MDPI, vol. 12(2), pages 1-7, April.
    11. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2018. "Connecting VIX and Stock Index ETF with VAR and Diagonal BEKK," JRFM, MDPI, vol. 11(4), pages 1-25, September.
    12. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    13. Demiralay, Sercan & Golitsis, Petros, 2021. "On the dynamic equicorrelations in cryptocurrency market," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 524-533.
    14. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    15. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    16. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    17. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    18. Hafner, Christian M. & Herwartz, Helmut & Maxand, Simone, 2022. "Identification of structural multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 212-227.
    19. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About DCC," Documentos de Trabajo del ICAE 2013-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.

    More about this item

    Keywords

    COVID-19; High-frequency co-movements; Bitcoin; Protocols; Cryptocurrencies;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:79:y:2022:i:c:s1042443122000610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.