IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v66y2014icp447-457.html
   My bibliography  Save this item

Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Setiawan, Andri D. & Dewi, Marmelia P. & Jafino, Bramka Arga & Hidayatno, Akhmad, 2022. "Evaluating feed-in tariff policies on enhancing geothermal development in Indonesia," Energy Policy, Elsevier, vol. 168(C).
  2. Eker, Sibel & van Daalen, Els, 2015. "A model-based analysis of biomethane production in the Netherlands and the effectiveness of the subsidization policy under uncertainty," Energy Policy, Elsevier, vol. 82(C), pages 178-196.
  3. Sim, Jaehun & Kim, Chae-Soo, 2019. "The value of renewable energy research and development investments with default consideration," Renewable Energy, Elsevier, vol. 143(C), pages 530-539.
  4. Laura Gabrielli & Aurora Greta Ruggeri & Massimiliano Scarpa, 2023. "Roadmap to a Sustainable Energy System: Is Uncertainty a Major Barrier to Investments for Building Energy Retrofit Projects in Wide City Compartments?," Energies, MDPI, vol. 16(11), pages 1-21, May.
  5. Morgan Bazilian & Debabrata Chattopadhyay, 2015. "Considering Power System Planning in Fragile and Conflict States," Cambridge Working Papers in Economics 1530, Faculty of Economics, University of Cambridge.
  6. Abbas Al-Refaie & Natalija Lepkova, 2022. "Impacts of Renewable Energy Policies on CO 2 Emissions Reduction and Energy Security Using System Dynamics: The Case of Small-Scale Sector in Jordan," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
  7. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
  8. Maria Acuna & Carlos Silva & Andrés Tocaruncho & Diana Vargas & Diego Patiño & David Barrera & Johan Peña, 2021. "Operational Planning of Energy for Non-Interconnected Zones: A Simulation-Optimization Approach and a Case Study to Tackle Energy Poverty in Colombia," Energies, MDPI, vol. 14(10), pages 1-16, May.
  9. Xiaodan Guo & Dongxiao Niu & Bowen Xiao, 2016. "Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis," Energies, MDPI, vol. 9(5), pages 1-23, May.
  10. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
  11. Copiello, Sergio & Gabrielli, Laura & Bonifaci, Pietro, 2017. "Evaluation of energy retrofit in buildings under conditions of uncertainty: The prominence of the discount rate," Energy, Elsevier, vol. 137(C), pages 104-117.
  12. Rout, Auroshis & Sahoo, Sudhansu S. & Thomas, Sanju, 2018. "Risk modeling of domestic solar water heater using Monte Carlo simulation for east-coastal region of India," Energy, Elsevier, vol. 145(C), pages 548-556.
  13. Kërçi, Taulant & Tzounas, Georgios & Milano, Federico, 2022. "A dynamic behavioral model of the long-term development of solar photovoltaic generation driven by feed-in tariffs," Energy, Elsevier, vol. 256(C).
  14. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
  15. Costa, Alberto & Ng, Tsan Sheng & Su, Bin, 2023. "Long-term solar PV planning: An economic-driven robust optimization approach," Applied Energy, Elsevier, vol. 335(C).
  16. Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
  17. Zhang, Ran & Wang, Xu & Al Shami, Elie & John, Sabu & Zuo, Lei & Wang, Chun H., 2018. "A novel indirect-drive regenerative shock absorber for energy harvesting and comparison with a conventional direct-drive regenerative shock absorber," Applied Energy, Elsevier, vol. 229(C), pages 111-127.
  18. Tang, Lei & Guo, Jue & Zhao, Boyang & Wang, Xiuli & Shao, Chengcheng & Wang, Yifei, 2021. "Power generation mix evolution based on rolling horizon optimal approach: A system dynamics analysis," Energy, Elsevier, vol. 224(C).
  19. Backhaus, Klaus & Gausling, Philipp & Hildebrand, Luise, 2015. "Comparing the incomparable: Lessons to be learned from models evaluating the feasibility of Desertec," Energy, Elsevier, vol. 82(C), pages 905-913.
  20. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  21. Bongsuk Sung & Myung-Bae Yeom & Hong-Gi Kim, 2017. "Eco-Efficiency of Government Policy and Exports in the Bioenergy Technology Market," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
  22. Xu, Jie & Yuan, Zhenhong & Chang, Shiyan, 2018. "Long-term cost trajectories for biofuels in China projected to 2050," Energy, Elsevier, vol. 160(C), pages 452-465.
  23. Chenjun Sun & Zengqiang Mi & Hui Ren & Zhipeng Jing & Jinling Lu & David Watts, 2019. "Multi-Dimensional Indexes for the Sustainability Evaluation of an Active Distribution Network," Energies, MDPI, vol. 12(3), pages 1-24, January.
  24. Chenjun Sun & Zengqiang Mi & Hui Ren & Fei Wang & Jing Chen & David Watts & Jinling Lu, 2018. "Study on the Incentives Mechanism for the Development of Distributed Photovoltaic Systems from a Long-Term Perspective," Energies, MDPI, vol. 11(5), pages 1-18, May.
  25. Xin-gang, Zhao & Wei, Wang & Ling, Wu, 2021. "A dynamic analysis of research and development incentive on China's photovoltaic industry based on system dynamics model," Energy, Elsevier, vol. 233(C).
  26. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
  27. Sheykhha, Siamak & Borggrefe, Frieder & Madlener, Reinhard, 2022. "Policy implications of spatially differentiated renewable energy promotion: A multi-level scenario analysis of onshore wind auctioning in Germany," Energy Policy, Elsevier, vol. 169(C).
  28. Mauleón, Ignacio & Hamoudi, Hamid, 2017. "Photovoltaic and wind cost decrease estimation: Implications for investment analysis," Energy, Elsevier, vol. 137(C), pages 1054-1065.
  29. Sung, Bongsuk, 2015. "Public policy supports and export performance of bioenergy technologies: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 477-495.
  30. Wang, Beibei & Chen, Li & Wang, Jiale & Zhao, Shengnan, 2022. "Microgrid distributed energy resources planning based on a long-term dynamic microsimulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 236-253.
  31. Valdivia, Miguel & Galan, Jose Luis & Laffarga, Joaquina & Ramos, Juan-Luis, 2020. "A research and technology valuation model for decision analysis in the environmental and renewable energy sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
  32. Liu, Pei & Lin, Borong & Zhou, Hao & Wu, Xiaoying & Little, John C., 2020. "CO2 emissions from urban buildings at the city scale: System dynamic projections and potential mitigation policies," Applied Energy, Elsevier, vol. 277(C).
  33. Shyekhha, Siamak & Borggrefe, Frieder & Madlener, Reinhard, 2019. "A Counterfactual Analysis of Regional Renewable Energy Auctions Taking the Spatial Dimension into Account," FCN Working Papers 22/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  34. Huatao Peng & Geert Duysters & Bert Sadowski, 2016. "The changing role of guanxi in influencing the development of entrepreneurial companies: a case study of the emergence of pharmaceutical companies in China," International Entrepreneurship and Management Journal, Springer, vol. 12(1), pages 215-258, March.
  35. Abbas Al-Refaie & Natalija Lepkova & Constantinos Hadjistassou, 2023. "Using System Dynamics to Examine Effects of Satisfaction with PV Systems, Advertising, and Competition on Energy Security and CO 2 Emissions in Jordan," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
  36. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
  37. Tang, Yanyan & Zhang, Qi & Wen, Zongguo & Bunn, Derek & Martin, Jesus Nieto, 2022. "Optimal analysis for facility configuration and energy management on electric light commercial vehicle charging," Energy, Elsevier, vol. 246(C).
  38. Wang, Meng & Yu, Hang & Lin, Xiaoyu & Jing, Rui & He, Fangjun & Li, Chaoen, 2020. "Comparing stochastic programming with posteriori approach for multi-objective optimization of distributed energy systems under uncertainty," Energy, Elsevier, vol. 210(C).
  39. Wang, Kung-Jeng & Lee, Kun-Shan & Liao, Jia-Hong, 2019. "Technology cooperation modeling of multiple profit-centered business units: A system dynamics framework," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 195-220.
  40. Kamphol Panyagometh, 2018. "Valuation of Solar-Wind Power Plant Project and Impact on Stock Price," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 354-360.
  41. Haokai Xie & Pu Zhao & Xudong Ji & Qun Lin & Lianguang Liu, 2019. "Expansion Planning Method of the Industrial Park Integrated Energy System Considering Regret Aversion," Energies, MDPI, vol. 12(21), pages 1-20, October.
  42. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part two - Application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1394-1404.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.