IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p3288-3305.html
   My bibliography  Save this article

Analyzing land and water requirements for solar deployment in the Southwestern United States

Author

Listed:
  • Bukhary, Saria
  • Ahmad, Sajjad
  • Batista, Jacimaria

Abstract

Among the types of renewable energy, solar energy is rapidly gaining popularity. Advances in technology have contributed to improved efficiency and reduced costs for solar energy systems, which can be placed in two categories: concentrated solar power (CSP) and solar photovoltaics (PV). Both types have to use water to clean the mirrors/panels to maintain their efficiency. CSP technology has additional water requirements for wet-cooling, dry-cooling, and hybrid cooling methods. For utility-scale solar deployment, water is also required during solar plant construction and dismantling. The southwest U.S. possesses abundant solar potential, but the expansion of solar power may be restricted by the limited availability of water. Estimates were gathered for water and land use for solar systems and harmonized through review and screening of relevant literature. Next, the estimates were incorporated into a system dynamics model to analyze water availability and usage, land availability and usage, and associated reductions in carbon emissions for utility-scale solar development in the solar energy zones (SEZ) of six southwestern states based upon the renewable portfolio standards (RPS) during 2015–2030. Results showed that solar PV was the most appropriate technology for water-limited regions. Sufficient land was available within the 19 SEZs to meet the RPS requirements. Available water was adequate to meet RPS solar carve-out water requirements for Nevada and New Mexico. For future work, the generated model can be modified to analyze the performances of renewables in addition to solar.

Suggested Citation

  • Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3288-3305
    DOI: 10.1016/j.rser.2017.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211731393X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmalensee, Richard, 2015. "The future of solar energy: A personal assessment," Energy Economics, Elsevier, vol. 52(S1), pages 142-148.
    2. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    3. Sajjad Ahmad & Slobodan Simonovic, 2006. "An Intelligent Decision Support System for Management of Floods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(3), pages 391-410, June.
    4. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    5. Bosetti, Valentina & Catenacci, Michela & Fiorese, Giulia & Verdolini, Elena, 2012. "The future prospect of PV and CSP solar technologies: An expert elicitation survey," Energy Policy, Elsevier, vol. 49(C), pages 308-317.
    6. Mai, Trieu & Mulcahy, David & Hand, M. Maureen & Baldwin, Samuel F., 2014. "Envisioning a renewable electricity future for the United States," Energy, Elsevier, vol. 65(C), pages 374-386.
    7. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    8. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Fadhl, Saeed Obaid, 2015. "Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 996-1027.
    9. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1413-1434, March.
    10. Nonhebel, Sanderine, 2005. "Renewable energy and food supply: will there be enough land?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 191-201, April.
    11. Tidwell, Vincent C. & Macknick, Jordan & Zemlick, Katie & Sanchez, Jasmine & Woldeyesus, Tibebe, 2014. "Transitioning to zero freshwater withdrawal in the U.S. for thermoelectric generation," Applied Energy, Elsevier, vol. 131(C), pages 508-516.
    12. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    13. Greenblatt, Jeffery B., 2015. "Modeling California policy impacts on greenhouse gas emissions," Energy Policy, Elsevier, vol. 78(C), pages 158-172.
    14. Arent, Doug & Pless, Jacquelyn & Mai, Trieu & Wiser, Ryan & Hand, Maureen & Baldwin, Sam & Heath, Garvin & Macknick, Jordan & Bazilian, Morgan & Schlosser, Adam & Denholm, Paul, 2014. "Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply," Applied Energy, Elsevier, vol. 123(C), pages 368-377.
    15. Mani, Monto & Pillai, Rohit, 2010. "Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3124-3131, December.
    16. Yuan, Jiahai & Xu, Yan & Zhang, Xingping & Hu, Zheng & Xu, Ming, 2014. "China's 2020 clean energy target: Consistency, pathways and policy implications," Energy Policy, Elsevier, vol. 65(C), pages 692-700.
    17. Wiser, Ryan & Barbose, Galen & Holt, Edward, 2011. "Supporting solar power in renewables portfolio standards: Experience from the United States," Energy Policy, Elsevier, vol. 39(7), pages 3894-3905, July.
    18. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    19. Pilli-Sihvola, Karoliina & Aatola, Piia & Ollikainen, Markku & Tuomenvirta, Heikki, 2010. "Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?," Energy Policy, Elsevier, vol. 38(5), pages 2409-2419, May.
    20. Barbose, Galen & Wiser, Ryan & Heeter, Jenny & Mai, Trieu & Bird, Lori & Bolinger, Mark & Carpenter, Alberta & Heath, Garvin & Keyser, David & Macknick, Jordan & Mills, Andrew & Millstein, Dev, 2016. "A retrospective analysis of benefits and impacts of U.S. renewable portfolio standards," Energy Policy, Elsevier, vol. 96(C), pages 645-660.
    21. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2016. "Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 33-61.
    22. Tang, Ou & Rehme, Jakob, 2017. "An investigation of renewable certificates policy in Swedish electricity industry using an integrated system dynamics model," International Journal of Production Economics, Elsevier, vol. 194(C), pages 200-213.
    23. Ozoegwu, C.G. & Mgbemene, C.A. & Ozor, P.A., 2017. "The status of solar energy integration and policy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 457-471.
    24. Liu, Ximei & Zeng, Ming, 2017. "Renewable energy investment risk evaluation model based on system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 782-788.
    25. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    26. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    27. Sahin, Oz & Stewart, Rodney A. & Giurco, Damien & Porter, Michael G., 2017. "Renewable hydropower generation as a co-benefit of balanced urban water portfolio management and flood risk mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1076-1087.
    28. Kumar Sahu, Bikash, 2015. "A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 621-634.
    29. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    30. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    31. Turney, Damon & Fthenakis, Vasilis, 2011. "Environmental impacts from the installation and operation of large-scale solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3261-3270, August.
    32. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    33. Horner, Robert M. & Clark, Corrie E., 2013. "Characterizing variability and reducing uncertainty in estimates of solar land use energy intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 129-137.
    34. Torres-Sibille, Ana del Carmen & Cloquell-Ballester, Vicente-Agustín & Cloquell-Ballester, Víctor-Andrés & Artacho Ramírez, Miguel Ángel, 2009. "Aesthetic impact assessment of solar power plants: An objective and a subjective approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 986-999, June.
    35. Zhang, Huili & Benoit, Hadrien & Perez-Lopèz, Inmaculada & Flamant, Gilles & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency solar power towers using particle suspensions as heat carrier in the receiver and in the thermal energy storage," Renewable Energy, Elsevier, vol. 111(C), pages 438-446.
    36. John J. Burkhardt & Garvin Heath & Elliot Cohen, 2012. "Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 93-109, April.
    37. Bustamante, Michele L. & Gaustad, Gabrielle, 2014. "Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics," Applied Energy, Elsevier, vol. 123(C), pages 397-414.
    38. Aslani, Alireza & Wong, Kau-Fui V., 2014. "Analysis of renewable energy development to power generation in the United States," Renewable Energy, Elsevier, vol. 63(C), pages 153-161.
    39. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    40. Ansari, Nastaran & Seifi, Abbas, 2012. "A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry," Energy, Elsevier, vol. 43(1), pages 334-343.
    41. Aslani, Alireza & Helo, Petri & Naaranoja, Marja, 2014. "Role of renewable energy policies in energy dependency in Finland: System dynamics approach," Applied Energy, Elsevier, vol. 113(C), pages 758-765.
    42. Saeed Hadian & Kaveh Madani, 2013. "The Water Demand of Energy: Implications for Sustainable Energy Policy Development," Sustainability, MDPI, vol. 5(11), pages 1-14, November.
    43. Denholm, Paul & Margolis, Robert M., 2008. "Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States," Energy Policy, Elsevier, vol. 36(9), pages 3531-3543, September.
    44. Khalid, Ahmad Mohd & Mitra, Indradip & Warmuth, Werner & Schacht, Volker, 2016. "Performance ratio – Crucial parameter for grid connected PV plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1139-1158.
    45. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    46. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "Erratum to: System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4367-4368, October.
    47. Slobodan Simonovic & Sajjad Ahmad, 2005. "Computer-based Model for Flood Evacuation Emergency Planning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(1), pages 25-51, January.
    48. Shrestha, Eleeja & Ahmad, Sajjad & Johnson, Walter & Batista, Jacimaria R., 2012. "The carbon footprint of water management policy options," Energy Policy, Elsevier, vol. 42(C), pages 201-212.
    49. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    50. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    51. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    52. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    53. David D. Hsu & Patrick O’Donoughue & Vasilis Fthenakis & Garvin A. Heath & Hyung Chul Kim & Pamala Sawyer & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 122-135, April.
    54. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Bai, Bo & Xiong, Siqin & Ma, Xiaoming & Liao, Xiawei, 2024. "Assessment of floating solar photovoltaic potential in China," Renewable Energy, Elsevier, vol. 220(C).
    3. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    4. Demetriou, E. & Hadjistassou, C., 2021. "Can China decarbonize its electricity sector?," Energy Policy, Elsevier, vol. 148(PB).
    5. Heinrichs, H.U. & Mourao, Z. & Venghaus, S. & Konadu, D. & Gillessen, B. & Vögele, S. & Linssen, J. & Allwood, J. & Kuckshinrichs, W. & Robinius, M. & Stolten, D., 2021. "Analysing the water and land system impacts of Germany's future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Usha Poudel & Haroon Stephen & Sajjad Ahmad, 2021. "Evaluating Irrigation Performance and Water Productivity Using EEFlux ET and NDVI," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    7. Eleonora Riva Sanseverino & Maurizio Cellura & Le Quyen Luu & Maria Anna Cusenza & Ninh Nguyen Quang & Nam Hoai Nguyen, 2021. "Life-Cycle Land-Use Requirement for PV in Vietnam," Energies, MDPI, vol. 14(4), pages 1-11, February.
    8. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    2. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    3. Eleonora Riva Sanseverino & Maurizio Cellura & Le Quyen Luu & Maria Anna Cusenza & Ninh Nguyen Quang & Nam Hoai Nguyen, 2021. "Life-Cycle Land-Use Requirement for PV in Vietnam," Energies, MDPI, vol. 14(4), pages 1-11, February.
    4. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Hirbodi, Kamran & Enjavi-Arsanjani, Mahboubeh & Yaghoubi, Mahmood, 2020. "Techno-economic assessment and environmental impact of concentrating solar power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    9. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    10. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    11. Fouad, M.M. & Shihata, Lamia A. & Morgan, ElSayed I., 2017. "An integrated review of factors influencing the perfomance of photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1499-1511.
    12. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    13. Semeraro, Teodoro & Pomes, Alessandro & Del Giudice, Cecilia & Negro, Danilo & Aretano, Roberta, 2018. "Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services," Energy Policy, Elsevier, vol. 117(C), pages 218-227.
    14. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    15. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    16. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    17. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    18. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    19. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    20. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3288-3305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.