IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p369-d200532.html
   My bibliography  Save this article

Multi-Dimensional Indexes for the Sustainability Evaluation of an Active Distribution Network

Author

Listed:
  • Chenjun Sun

    (School of Electrical & Electronic Engineering, North China Electric Power University, Baoding 071003, China
    State Grid Hebei Electric Power Supply Co., Ltd., Shijiazhuang 050022, China)

  • Zengqiang Mi

    (School of Electrical & Electronic Engineering, North China Electric Power University, Baoding 071003, China)

  • Hui Ren

    (School of Electrical & Electronic Engineering, North China Electric Power University, Baoding 071003, China
    State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Baoding 071003, China)

  • Zhipeng Jing

    (State Grid Hebei Electric Power Corporation Limited Economic Technology Research Institute, Shijiazhuang 050021, China)

  • Jinling Lu

    (School of Electrical & Electronic Engineering, North China Electric Power University, Baoding 071003, China)

  • David Watts

    (Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
    Centro de Energía, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile)

Abstract

An active distribution network (ADN) differs from a traditional distribution network in many aspects, one of which is the integration of a large amount of distributed generation (DG), especially intermittent photovoltaics (PVs). The integration of intermittent PVs has both pros and cons for the distribution system. As the platform on which new techniques work and the main body of a greener future energy system, the development of an ADN has to be sustainable, need-oriented, and environmentally friendly, and the traditional technical–economic evaluation method cannot meet the requirements and provide advice in the decision-making process. Based on the concept of sustainable development, we used an ADN with the integration of a large number of distributed PVs (DGPVs) as an example and established a multi-dimensional index system to evaluate the sustainable development level (SDI) of the ADN. The analysis was based on a platform we built with consideration of the investment feasibility of the DGPVs’ investors, state and industrial policies, and their interactions with the distribution system. We first compared the development of DGPVs and the SDI of the ADN as the carrier of DGPVs under different state policies, and second, we compared the SDIs of three city ADNs with different solar resources and demand levels, but under the same state policy. The analysis results showed that different integration levels of DGPVs can be set for a city/area ADN with different solar resources and demand to achieve a comparable SDI, and a comprehensive incentive mechanism could be adopted for the development of DGPVs. In this way, the benefits of different parties can be considered at the same time and finally, the coordination of the sustainable development of multi-parties can be achieved.

Suggested Citation

  • Chenjun Sun & Zengqiang Mi & Hui Ren & Zhipeng Jing & Jinling Lu & David Watts, 2019. "Multi-Dimensional Indexes for the Sustainability Evaluation of an Active Distribution Network," Energies, MDPI, vol. 12(3), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:369-:d:200532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karger, Cornelia R. & Hennings, Wilfried, 2009. "Sustainability evaluation of decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 583-593, April.
    2. Poudineh, Rahmatallah & Jamasb, Tooraj, 2014. "Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement," Energy Policy, Elsevier, vol. 67(C), pages 222-231.
    3. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 513-530.
    4. Doukas, Haris & Papadopoulou, Alexandra & Savvakis, Nikolaos & Tsoutsos, Theocharis & Psarras, John, 2012. "Assessing energy sustainability of rural communities using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1949-1957.
    5. Maxim, Alexandru, 2014. "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, Elsevier, vol. 65(C), pages 284-297.
    6. Chenjun Sun & Zengqiang Mi & Hui Ren & Fei Wang & Jing Chen & David Watts & Jinling Lu, 2018. "Study on the Incentives Mechanism for the Development of Distributed Photovoltaic Systems from a Long-Term Perspective," Energies, MDPI, vol. 11(5), pages 1-18, May.
    7. Horowitz, Kelsey A.W. & Palmintier, Bryan & Mather, Barry & Denholm, Paul, 2018. "Distribution system costs associated with the deployment of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 420-433.
    8. Afgan, Nain H. & Carvalho, Maria G., 2008. "Sustainability assessment of a hybrid energy system," Energy Policy, Elsevier, vol. 36(8), pages 2893-2900, August.
    9. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    10. Lo Prete, Chiara & Hobbs, Benjamin F. & Norman, Catherine S. & Cano-Andrade, Sergio & Fuentes, Alejandro & von Spakovsky, Michael R. & Mili, Lamine, 2012. "Sustainability and reliability assessment of microgrids in a regional electricity market," Energy, Elsevier, vol. 41(1), pages 192-202.
    11. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    12. Dombi, Mihály & Kuti, István & Balogh, Péter, 2014. "Sustainability assessment of renewable power and heat generation technologies," Energy Policy, Elsevier, vol. 67(C), pages 264-271.
    13. Sharma, Tarun & Balachandra, P., 2015. "Benchmarking sustainability of Indian electricity system: An indicator approach," Applied Energy, Elsevier, vol. 142(C), pages 206-220.
    14. Stamford, Laurence & Azapagic, Adisa, 2011. "Sustainability indicators for the assessment of nuclear power," Energy, Elsevier, vol. 36(10), pages 6037-6057.
    15. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    16. Helms, Thorsten & Loock, Moritz & Bohnsack, René, 2016. "Timing-based business models for flexibility creation in the electric power sector," Energy Policy, Elsevier, vol. 92(C), pages 348-358.
    17. Simsek, Yeliz & Watts, David & Escobar, Rodrigo, 2018. "Sustainability evaluation of Concentrated Solar Power (CSP) projects under Clean Development Mechanism (CDM) by using Multi Criteria Decision Method (MCDM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 421-438.
    18. Schlör, Holger & Fischer, Wolfgang & Hake, Jürgen-Friedrich, 2013. "Methods of measuring sustainable development of the German energy sector," Applied Energy, Elsevier, vol. 101(C), pages 172-181.
    19. Golušin, Mirjana & Munitlak Ivanović, Olja & Redžepagić, Srdjan, 2013. "Transition from traditional to sustainable energy development in the region of Western Balkans – Current level and requirements," Applied Energy, Elsevier, vol. 101(C), pages 182-191.
    20. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Ali Abbas Kazmi & Usama Ameer Khan & Waleed Ahmad & Muhammad Hassan & Fahim Ahmed Ibupoto & Syed Basit Ali Bukhari & Sajid Ali & M. Mahad Malik & Dong Ryeol Shin, 2021. "Multiple (TEES)-Criteria-Based Sustainable Planning Approach for Mesh-Configured Distribution Mechanisms across Multiple Load Growth Horizons," Energies, MDPI, vol. 14(11), pages 1-44, May.
    2. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    3. Siqing Sheng & Qing Gu, 2019. "A Day-ahead and Day-in Decision Model Considering the Uncertainty of Multiple Kinds of Demand Response," Energies, MDPI, vol. 12(9), pages 1-26, May.
    4. Xuejun Zheng & Shaorong Wang & Xin Su & Mengmeng Xiao & Zia Ullah & Xin Hu & Chang Ye, 2021. "Real-Time Dynamic Behavior Evaluation of Active Distribution Networks Leveraging Low-Cost PMUs," Energies, MDPI, vol. 14(16), pages 1-20, August.
    5. Jin-peng Liu & Yu Tian & Hao Zheng & Tao Yi, 2019. "Research on Dynamic Evolution Simulation and Sustainability Evaluation Model of China’s Power Supply and Demand System," Energies, MDPI, vol. 12(10), pages 1-23, May.
    6. Muhammad Shahroz Sultan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Dong Ryeol Shin, 2023. "Multi-Objective Optimization-Based Approach for Optimal Allocation of Distributed Generation Considering Techno-Economic and Environmental Indices," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    7. Yan Nie & Guoxing Zhang, 2020. "Indicator system to evaluate the effectiveness and efficiency of China clean power systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1381-1401, October.
    8. Longze Wang & Shucen Jiao & Yu Xie & Saif Mubaarak & Delong Zhang & Jinxin Liu & Siyu Jiang & Yan Zhang & Meicheng Li, 2021. "A Permissioned Blockchain-Based Energy Management System for Renewable Energy Microgrids," Sustainability, MDPI, vol. 13(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moslehi, Salim & Reddy, T. Agami, 2019. "A new quantitative life cycle sustainability assessment framework: Application to integrated energy systems," Applied Energy, Elsevier, vol. 239(C), pages 482-493.
    2. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Luthra, Sunil & Mangla, Sachin Kumar & Kharb, Ravinder K., 2015. "Sustainable assessment in energy planning and management in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 58-73.
    5. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2022. "Indicators for sustainable energy development: An Icelandic case study," Energy Policy, Elsevier, vol. 164(C).
    6. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.
    7. Sandu, Suwin & Yang, Muyi & Phoumin, Han & Aghdam, Reza Fathollahzadeh & Shi, Xunpeng, 2021. "Assessment of accessible, clean and efficient energy systems: A statistical analysis of composite energy performance indices," Applied Energy, Elsevier, vol. 304(C).
    8. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    9. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    10. Álvaro L. Ferreira & Tomás C. de Castro & Marcelo A. Costa & Sérgio H. R. Ribeiro & Iguatinan G. Monteiro, 2023. "Financial sustainability disparities among energy distribution companies: a multi-factor study case in Brazil," SN Business & Economics, Springer, vol. 3(7), pages 1-35, July.
    11. Chenjun Sun & Zengqiang Mi & Hui Ren & Fei Wang & Jing Chen & David Watts & Jinling Lu, 2018. "Study on the Incentives Mechanism for the Development of Distributed Photovoltaic Systems from a Long-Term Perspective," Energies, MDPI, vol. 11(5), pages 1-18, May.
    12. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2020. "Review of indicators for sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    14. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    15. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    16. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    17. Assadi, Mohammad Reza & Ataebi, Melikasadat & Ataebi, Elmira sadat & Hasani, Aliakbar, 2022. "Prioritization of renewable energy resources based on sustainable management approach using simultaneous evaluation of criteria and alternatives: A case study on Iran's electricity industry," Renewable Energy, Elsevier, vol. 181(C), pages 820-832.
    18. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    19. Halkos, George E. & Aslanidis, Panagiotis – Stavros C., 2023. "Sustainable energy development in an era of geopolitical multi-crisis. Applying productivity indices within institutional framework," Resources Policy, Elsevier, vol. 85(PB).
    20. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:369-:d:200532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.