IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221002498.html
   My bibliography  Save this article

Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources

Author

Listed:
  • Yun, Eunjeong
  • Hur, Jin

Abstract

Wind-generating resources are variable and uncertain compared to traditional power generation resources. The accurate short-term forecasting of power outputs is essential to the extensive integration of wind generation into power grids. The variability of wind speed leads to uncertainty in wind power outputs. Consequently, forecasting errors increase the uncertainty of wind power forecasts. In this paper, we propose the probabilistic power curve estimation to enhance power output forecasting of wind generating resources. In order to enhance the wind power output forecasting, the probabilistic approach such as theoretical Weibull distribution parameters and Monte-Carlo simulation method is applied, the new multiple segments of the existing power curve are used for practical probabilistic power curve and spatial interpolation modeling based on Ordinary Kriging techniques is proposed for generating wind speed forecasting outputs. In addition, the new power slope estimation of the forecasting power outputs is proposed. To validate the proposed probabilistic power curve model, empirical data from the Jeju Island’s wind farms are considered in South Korea. The proposed probabilistic power curve model will contribute to the accurate estimation of the relationships between measured wind speeds and electrical power outputs, thus quantifying the uncertainties in power energy conversion.

Suggested Citation

  • Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002498
    DOI: 10.1016/j.energy.2021.120000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado & Andrés Felipe Obando-Montaño, 2014. "An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)," Energies, MDPI, vol. 7(4), pages 1-25, April.
    2. Gallego-Castillo, Cristobal & Bessa, Ricardo & Cavalcante, Laura & Lopez-Garcia, Oscar, 2016. "On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power," Energy, Elsevier, vol. 113(C), pages 355-365.
    3. Elma, Onur & Taşcıkaraoğlu, Akın & Tahir İnce, A. & Selamoğulları, Uğur S., 2017. "Implementation of a dynamic energy management system using real time pricing and local renewable energy generation forecasts," Energy, Elsevier, vol. 134(C), pages 206-220.
    4. Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
    5. David Barbosa de Alencar & Carolina De Mattos Affonso & Roberto Célio Limão de Oliveira & Jorge Laureano Moya Rodríguez & Jandecy Cabral Leite & José Carlos Reston Filho, 2017. "Different Models for Forecasting Wind Power Generation: Case Study," Energies, MDPI, vol. 10(12), pages 1-27, November.
    6. Nielson, Jordan & Bhaganagar, Kiran & Meka, Rajitha & Alaeddini, Adel, 2020. "Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction," Energy, Elsevier, vol. 190(C).
    7. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    8. Amirinia, Gholamreza & Kamranzad, Bahareh & Mafi, Somayeh, 2017. "Wind and wave energy potential in southern Caspian Sea using uncertainty analysis," Energy, Elsevier, vol. 120(C), pages 332-345.
    9. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2020. "Spatial and temporal correlation analysis of wind power between different provinces in China," Energy, Elsevier, vol. 191(C).
    10. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    11. Giwhyun Lee & Yu Ding & Marc G. Genton & Le Xie, 2015. "Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 56-67, March.
    12. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    13. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    14. Bingchun Liu & Shijie Zhao & Xiaogang Yu & Lei Zhang & Qingshan Wang, 2020. "A Novel Deep Learning Approach for Wind Power Forecasting Based on WD-LSTM Model," Energies, MDPI, vol. 13(18), pages 1-17, September.
    15. Mabel, M. Carolin & Raj, R. Edwin & Fernandez, E., 2010. "Adequacy evaluation of wind power generation systems," Energy, Elsevier, vol. 35(12), pages 5217-5222.
    16. Li Han & Yan Qiao & Mengjie Li & Liping Shi, 2020. "Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning," Energies, MDPI, vol. 13(23), pages 1-19, December.
    17. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    18. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    19. Li, Lei & Yin, Xiao-Li & Jia, Xin-Chun & Sobhani, Behrooz, 2020. "Day ahead powerful probabilistic wind power forecast using combined intelligent structure and fuzzy clustering algorithm," Energy, Elsevier, vol. 192(C).
    20. Mohsen Vahidzadeh & Corey D. Markfort, 2019. "Modified Power Curves for Prediction of Power Output of Wind Farms," Energies, MDPI, vol. 12(9), pages 1-19, May.
    21. Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
    22. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    23. Zhang, Jie & Cui, Mingjian & Hodge, Bri-Mathias & Florita, Anthony & Freedman, Jeffrey, 2017. "Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales," Energy, Elsevier, vol. 122(C), pages 528-541.
    24. Korprasertsak, Natapol & Leephakpreeda, Thananchai, 2019. "Robust short-term prediction of wind power generation under uncertainty via statistical interpretation of multiple forecasting models," Energy, Elsevier, vol. 180(C), pages 387-397.
    25. Birgir Hrafnkelsson & Gudmundur V. Oddsson & Runar Unnthorsson, 2016. "A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation," Energies, MDPI, vol. 9(4), pages 1-14, April.
    26. Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Jung & Dirk Schindler, 2023. "Reasons for the Recent Onshore Wind Capacity Factor Increase," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    3. Qian, Guo-Wei & Ishihara, Takeshi, 2022. "A novel probabilistic power curve model to predict the power production and its uncertainty for a wind farm over complex terrain," Energy, Elsevier, vol. 261(PA).
    4. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    5. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Wang, Yun & Duan, Xiaocong & Zou, Runmin & Zhang, Fan & Li, Yifen & Hu, Qinghua, 2023. "A novel data-driven deep learning approach for wind turbine power curve modeling," Energy, Elsevier, vol. 270(C).
    7. Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
    8. Mengjun Liao & Lin Zhu & Yonghao Hu & Yang Liu & Yue Wu & Leke Chen, 2023. "Dynamic Equivalent Modeling of a Large Renewable Power Plant Using a Data-Driven Degree of Similarity Method," Energies, MDPI, vol. 16(19), pages 1-20, October.
    9. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
    10. Fan, Huijing & Zhen, Zhao & Liu, Nian & Sun, Yiqian & Chang, Xiqiang & Li, Yu & Wang, Fei & Mi, Zengqiang, 2023. "Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Danxiang & Wang, Jianzhou & Niu, Xinsong & Li, Zhiwu, 2021. "Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks," Applied Energy, Elsevier, vol. 292(C).
    2. Fan, Huijing & Zhen, Zhao & Liu, Nian & Sun, Yiqian & Chang, Xiqiang & Li, Yu & Wang, Fei & Mi, Zengqiang, 2023. "Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method," Energy, Elsevier, vol. 266(C).
    3. Tang, Yugui & Yang, Kuo & Zheng, Yichu & Ma, Li & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A transfer learning approach incorporating temporal convolution and adversarial training," Renewable Energy, Elsevier, vol. 224(C).
    4. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    5. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    6. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
    7. Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
    8. Liu, Hongyi & Han, Hua & Sun, Yao & Shi, Guangze & Su, Mei & Liu, Zhangjie & Wang, Hongfei & Deng, Xiaofei, 2022. "Short-term wind power interval prediction method using VMD-RFG and Att-GRU," Energy, Elsevier, vol. 251(C).
    9. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
    10. Kirchner-Bossi, Nicolas & Kathari, Gabriel & Porté-Agel, Fernando, 2024. "A hybrid physics-based and data-driven model for intra-day and day-ahead wind power forecasting considering a drastically expanded predictor search space," Applied Energy, Elsevier, vol. 367(C).
    11. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    12. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
    13. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    14. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    15. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    16. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    17. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    18. António Couto & Paula Costa & Teresa Simões, 2021. "Identification of Extreme Wind Events Using a Weather Type Classification," Energies, MDPI, vol. 14(13), pages 1-16, July.
    19. Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
    20. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.