IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v53y2013icp52-57.html
   My bibliography  Save this item

Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fang, Zhenhua & Pan, Zhen & Ma, Guiyang & Yu, Jingxian & Shang, Liyan & Zhang, Zhien, 2023. "Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 269(C).
  2. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
  3. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
  4. Rimkus, Alfredas & Stravinskas, Saulius & Matijošius, Jonas & Hunicz, Jacek, 2024. "Effects of different gas energy shares on combustion and emission characteristics of compression ignition engine fueled with dual-fossil fuel and dual-biofuel," Energy, Elsevier, vol. 312(C).
  5. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
  6. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
  7. Sergejus Lebedevas & Saugirdas Pukalskas & Vygintas Daukšys & Alfredas Rimkus & Mindaugas Melaika & Linas Jonika, 2019. "Research on Fuel Efficiency and Emissions of Converted Diesel Engine with Conventional Fuel Injection System for Operation on Natural Gas," Energies, MDPI, vol. 12(12), pages 1-32, June.
  8. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
  9. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Investigation on the Effect of the Gas Exchange Process on the Diesel Engine Thermal Overload with Experimental Results," Energies, MDPI, vol. 10(6), pages 1, May.
  10. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
  11. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
  12. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
  13. Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
  14. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
  15. Imantas Lipskis & Saugirdas Pukalskas & Paweł Droździel & Dalibor Barta & Vidas Žuraulis & Robertas Pečeliūnas, 2021. "Modelling and Simulation of the Performance and Combustion Characteristics of a Locomotive Diesel Engine Operating on a Diesel–LNG Mixture," Energies, MDPI, vol. 14(17), pages 1-11, August.
  16. Chen, Zheng & Ai, Yaquan & Qin, Tao & Luo, Feng, 2019. "Quantitative evaluation of n-butane concentration on knock severity of a natural gas heavy-duty SI engine," Energy, Elsevier, vol. 189(C).
  17. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2015. "An experimental study of the performance, combustion and emission characteristics of a CI engine under dual fuel mode using CNG and oxygenated pilot fuel blends," Energy, Elsevier, vol. 86(C), pages 560-573.
  18. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
  19. Choi, Sung & Park, Jungjoon & Kang, Yong Tae, 2019. "Experimental investigation on CO2 hydrate formation/dissociation for cold thermal energy harvest and transportation applications," Applied Energy, Elsevier, vol. 242(C), pages 1358-1368.
  20. Li, Menghan & Zhang, Qiang & Li, Guoxiang & Shao, Sidong, 2015. "Experimental investigation on performance and heat release analysis of a pilot ignited direct injection natural gas engine," Energy, Elsevier, vol. 90(P2), pages 1251-1260.
  21. Ivan Smajla & Daria Karasalihović Sedlar & Branko Drljača & Lucija Jukić, 2019. "Fuel Switch to LNG in Heavy Truck Traffic," Energies, MDPI, vol. 12(3), pages 1-19, February.
  22. Tarafdar, Anirban & Majumder, P. & Deb, Madhujit & Bera, U.K., 2023. "Application of a q-rung orthopair hesitant fuzzy aggregated Type-3 fuzzy logic in the characterization of performance-emission profile of a single cylinder CI-engine operating with hydrogen in dual fu," Energy, Elsevier, vol. 269(C).
  23. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
  24. Chintala, Venkateswarlu & Subramanian, K.A., 2013. "A CFD (computational fluid dynamics) study for optimization of gas injector orientation for performance improvement of a dual-fuel diesel engine," Energy, Elsevier, vol. 57(C), pages 709-721.
  25. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
  26. Andrzej Biessikirski & Przemysław Bodziony & Michał Dworzak, 2024. "Energy Consumption and Fume Analysis: A Comparative Analysis of the Blasting Technique and Mechanical Excavation in a Polish Gypsum Open-Pit Mine," Energies, MDPI, vol. 17(22), pages 1-28, November.
  27. Osorio-Tejada, Jose Luis & Llera-Sastresa, Eva & Scarpellini, Sabina, 2017. "Liquefied natural gas: Could it be a reliable option for road freight transport in the EU?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 785-795.
  28. Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
  29. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.