IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p766-d100123.html
   My bibliography  Save this article

Investigation on the Effect of the Gas Exchange Process on the Diesel Engine Thermal Overload with Experimental Results

Author

Listed:
  • Sangram Kishore Nanda

    (Wärtsilä Services Switzerland Ltd., CH-8401 Winterthur, Switzerland
    Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

  • Boru Jia

    (Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

  • Andrew Smallbone

    (Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

  • Anthony Paul Roskilly

    (Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

Abstract

In this paper, the influence of the gas exchange process on the diesel engine thermal overload is provided. Main components involved in the gas exchange process are discussed. The ambient conditions, the turbocharger performance, and the valve timing that affect the gas exchange process have been investigated. Experiments were conducted to simulate ambient conditions at different geographical locations and demonstrated a decrease in oxygen concentration in the exhaust as the humidity level in the air increased. Additionally, the effect of an inefficient turbocharger on an engine operating at part-load was also investigated. It was observed that an overly lean air/fuel mixture caused inefficient scavenging and the corresponding level of residual gas trapped in the cylinder increased. This resulted in partial combustion which could be observed as white smoke from the engine exhaust stack, therefore indicating the presence of unburnt fuel. Exhaust valve timing measurements showed that the cylinder with the highest wear rate had its valve closure timing 10 crank angle degrees after the cylinder with least wear rate. The exhaust valves were closed earlier than the designed condition which impaired the scavenging process and increased the level of residual gas trapped in the cylinder. This resulted in a reduction of the actual air-to-fuel ratio and high exhaust gas temperatures.

Suggested Citation

  • Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Investigation on the Effect of the Gas Exchange Process on the Diesel Engine Thermal Overload with Experimental Results," Energies, MDPI, vol. 10(6), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:766-:d:100123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Fundamental Analysis of Thermal Overload in Diesel Engines: Hypothesis and Validation," Energies, MDPI, vol. 10(3), pages 1-12, March.
    2. Cheenkachorn, Kraipat & Poompipatpong, Chedthawut & Ho, Choi Gyeung, 2013. "Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas)," Energy, Elsevier, vol. 53(C), pages 52-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaojie Shen & Wenzheng Cui & Xiaodong Ju & Zhongchang Liu & Shaohua Wu & Jianguo Yang, 2017. "Numeric Investigation of Gas Distribution in the Intake Manifold and Intake Ports of a Multi-Cylinder Diesel Engine Refined for Exhaust Gas Stratification," Energies, MDPI, vol. 10(11), pages 1-13, November.
    2. Sapra, Harsh & Godjevac, Milinko & Visser, Klaas & Stapersma, Douwe & Dijkstra, Chris, 2017. "Experimental and simulation-based investigations of marine diesel engine performance against static back pressure," Applied Energy, Elsevier, vol. 204(C), pages 78-92.
    3. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Development of a Diesel Engine Thermal Overload Monitoring System with Applications and Test Results," Energies, MDPI, vol. 10(7), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    2. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    3. Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
    4. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    5. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Development of a Diesel Engine Thermal Overload Monitoring System with Applications and Test Results," Energies, MDPI, vol. 10(7), pages 1-13, June.
    6. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    7. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    8. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    9. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    10. Osorio-Tejada, Jose Luis & Llera-Sastresa, Eva & Scarpellini, Sabina, 2017. "Liquefied natural gas: Could it be a reliable option for road freight transport in the EU?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 785-795.
    11. Sapra, Harsh & Godjevac, Milinko & Visser, Klaas & Stapersma, Douwe & Dijkstra, Chris, 2017. "Experimental and simulation-based investigations of marine diesel engine performance against static back pressure," Applied Energy, Elsevier, vol. 204(C), pages 78-92.
    12. Sergejus Lebedevas & Saugirdas Pukalskas & Vygintas Daukšys & Alfredas Rimkus & Mindaugas Melaika & Linas Jonika, 2019. "Research on Fuel Efficiency and Emissions of Converted Diesel Engine with Conventional Fuel Injection System for Operation on Natural Gas," Energies, MDPI, vol. 12(12), pages 1-32, June.
    13. Imantas Lipskis & Saugirdas Pukalskas & Paweł Droździel & Dalibor Barta & Vidas Žuraulis & Robertas Pečeliūnas, 2021. "Modelling and Simulation of the Performance and Combustion Characteristics of a Locomotive Diesel Engine Operating on a Diesel–LNG Mixture," Energies, MDPI, vol. 14(17), pages 1-11, August.
    14. Chen, Zheng & Ai, Yaquan & Qin, Tao & Luo, Feng, 2019. "Quantitative evaluation of n-butane concentration on knock severity of a natural gas heavy-duty SI engine," Energy, Elsevier, vol. 189(C).
    15. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    16. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
    17. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
    18. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    19. Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    20. Fang, Zhenhua & Pan, Zhen & Ma, Guiyang & Yu, Jingxian & Shang, Liyan & Zhang, Zhien, 2023. "Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:766-:d:100123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.