IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5318-d623111.html
   My bibliography  Save this article

Modelling and Simulation of the Performance and Combustion Characteristics of a Locomotive Diesel Engine Operating on a Diesel–LNG Mixture

Author

Listed:
  • Imantas Lipskis

    (Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičius g. 28, LT-03224 Vilnius, Lithuania)

  • Saugirdas Pukalskas

    (Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičius g. 28, LT-03224 Vilnius, Lithuania)

  • Paweł Droździel

    (Department of Sustainable Transport and Powertrains, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Str. 36, 20-618 Lublin, Poland)

  • Dalibor Barta

    (Department of Transport and Handling Machines, Faculty of Mechanical Engineering, University of Žilina, Univerzitna 8215/1, 010 26 Žilina, Slovakia)

  • Vidas Žuraulis

    (Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičius g. 28, LT-03224 Vilnius, Lithuania)

  • Robertas Pečeliūnas

    (Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičius g. 28, LT-03224 Vilnius, Lithuania)

Abstract

The article describes a compression-ignition engine working with a dual-fuel system installed in diesel locomotive TEP70 BS. The model of the locomotive engine has been created applying AVL BOOST and Diesel RK software and engine performance simulations. Combustion characteristics have been identified employing the mixtures of different fuels. The paper compares ecological (CO 2 , NO x , PM) and energy (in-cylinder pressure, temperature and the rate of heat release ( ROHR )) indicators of a diesel and fuel mixtures-driven locomotive. The performed simulation has shown that different fuel proportions increased methane content and decreased diesel content in the fuel mixture, as well as causing higher in-cylinder pressure and ROHR ; however, in-cylinder temperature dropped. CO 2 , NO x and PM emissions decrease in all cases thus raising methane and reducing diesel content in the fuel mixture.

Suggested Citation

  • Imantas Lipskis & Saugirdas Pukalskas & Paweł Droździel & Dalibor Barta & Vidas Žuraulis & Robertas Pečeliūnas, 2021. "Modelling and Simulation of the Performance and Combustion Characteristics of a Locomotive Diesel Engine Operating on a Diesel–LNG Mixture," Energies, MDPI, vol. 14(17), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5318-:d:623111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheenkachorn, Kraipat & Poompipatpong, Chedthawut & Ho, Choi Gyeung, 2013. "Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas)," Energy, Elsevier, vol. 53(C), pages 52-57.
    2. Arteconi, A. & Polonara, F., 2013. "LNG as vehicle fuel and the problem of supply: The Italian case study," Energy Policy, Elsevier, vol. 62(C), pages 503-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saad Ahmad & Ali Turab Jafry & Muteeb ul Haq & Naseem Abbas & Huma Ajab & Arif Hussain & Uzair Sajjad, 2023. "Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives," Energies, MDPI, vol. 16(13), pages 1-33, July.
    2. Youcef Sehili & Khaled Loubar & Lyes Tarabet & Mahfoudh Cerdoun & Clément Lacroix, 2023. "Development of Predictive Model for Hydrogen-Natural Gas/Diesel Dual Fuel Engine," Energies, MDPI, vol. 16(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osorio-Tejada, Jose Luis & Llera-Sastresa, Eva & Scarpellini, Sabina, 2017. "Liquefied natural gas: Could it be a reliable option for road freight transport in the EU?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 785-795.
    2. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    3. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    4. Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
    5. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.
    8. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    9. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    10. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    11. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    12. Sergejus Lebedevas & Saugirdas Pukalskas & Vygintas Daukšys & Alfredas Rimkus & Mindaugas Melaika & Linas Jonika, 2019. "Research on Fuel Efficiency and Emissions of Converted Diesel Engine with Conventional Fuel Injection System for Operation on Natural Gas," Energies, MDPI, vol. 12(12), pages 1-32, June.
    13. Chen, Zheng & Ai, Yaquan & Qin, Tao & Luo, Feng, 2019. "Quantitative evaluation of n-butane concentration on knock severity of a natural gas heavy-duty SI engine," Energy, Elsevier, vol. 189(C).
    14. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    15. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
    16. Pfoser, Sarah & Schauer, Oliver & Costa, Yasel, 2018. "Acceptance of LNG as an alternative fuel: Determinants and policy implications," Energy Policy, Elsevier, vol. 120(C), pages 259-267.
    17. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
    18. Markéta Mikolajková-Alifov & Frank Pettersson & Margareta Björklund-Sänkiaho & Henrik Saxén, 2019. "A Model of Optimal Gas Supply to a Set of Distributed Consumers," Energies, MDPI, vol. 12(3), pages 1-27, January.
    19. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    20. Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5318-:d:623111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.