My bibliography
Save this item
A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Chu & Hu, Haowen & Ji, Jie & Liu, Kang & Xia, Xin & Nazir, Muhammad Shahzad & Peng, Tian, 2023. "An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC," Applied Energy, Elsevier, vol. 330(PA).
- He, Yaoyao & Cao, Chaojin & Wang, Shuo & Fu, Hong, 2022. "Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems," Applied Energy, Elsevier, vol. 322(C).
- Yundong Gu & Dongfen Ma & Jiawei Cui & Zhenhua Li & Yaqi Chen, 2022. "Variable-Weighted Ensemble Forecasting of Short-Term Power Load Based on Factor Space Theory," Annals of Data Science, Springer, vol. 9(3), pages 485-501, June.
- Leng, Chunyang & Jia, Mingxing & Zheng, Haijin & Deng, Jibin & Niu, Dapeng, 2023. "Dynamic liquid level prediction in oil wells during oil extraction based on WOA-AM-LSTM-ANN model using dynamic and static information," Energy, Elsevier, vol. 282(C).
- Pedro M. R. Bento & Jose A. N. Pombo & Maria R. A. Calado & Silvio J. P. S. Mariano, 2021. "Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting," Energies, MDPI, vol. 14(21), pages 1-21, November.
- Mohamed Trabelsi & Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Shady S. Refaat & Tingwen Huang & Fakhreddine S. Oueslati, 2022. "An Effective Hybrid Symbolic Regression–Deep Multilayer Perceptron Technique for PV Power Forecasting," Energies, MDPI, vol. 15(23), pages 1-14, November.
- Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
- Zhang, Wenyu & Chen, Qian & Yan, Jianyong & Zhang, Shuai & Xu, Jiyuan, 2021. "A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting," Energy, Elsevier, vol. 236(C).
- Van-Hieu Vu, 2024. "An Efficient Customer Churn Prediction Technique Using Combined Machine Learning in Commercial Banks," SN Operations Research Forum, Springer, vol. 5(3), pages 1-20, September.
- Joanna Kajewska-Szkudlarek & Jan Bylicki & Justyna Stańczyk & Paweł Licznar, 2021. "Neural Approach in Short-Term Outdoor Temperature Prediction for Application in HVAC Systems," Energies, MDPI, vol. 14(22), pages 1-15, November.
- Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
- He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
- Qinghe Zhao & Xinyi Liu & Junlong Fang, 2023. "Extreme Gradient Boosting Model for Day-Ahead STLF in National Level Power System: Estonia Case Study," Energies, MDPI, vol. 16(24), pages 1-29, December.
- Ghimire, Sujan & Nguyen-Huy, Thong & AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2023. "A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction," Energy, Elsevier, vol. 275(C).
- Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
- Lai, Changzhi & Wang, Yu & Fan, Kai & Cai, Qilin & Ye, Qing & Pang, Haoqiang & Wu, Xi, 2022. "An improved forecasting model of short-term electric load of papermaking enterprises for production line optimization," Energy, Elsevier, vol. 245(C).
- Hung Viet Nguyen & Haewon Byeon, 2023. "Prediction of Out-of-Hospital Cardiac Arrest Survival Outcomes Using a Hybrid Agnostic Explanation TabNet Model," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
- Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
- Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Pachauri, Nikhil & Ahn, Chang Wook, 2023. "Weighted aggregated ensemble model for energy demand management of buildings," Energy, Elsevier, vol. 263(PC).
- Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
- Tharindu P. De Alwis & S. Yaser Samadi, 2024. "Stacking-based neural network for nonlinear time series analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 901-924, July.
- Deliang Sun & Danlu Chen & Jialan Zhang & Changlin Mi & Qingyu Gu & Haijia Wen, 2023. "Landslide Susceptibility Mapping Based on Interpretable Machine Learning from the Perspective of Geomorphological Differentiation," Land, MDPI, vol. 12(5), pages 1-37, May.
- Md Jamal Ahmed Shohan & Md Omar Faruque & Simon Y. Foo, 2022. "Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model," Energies, MDPI, vol. 15(6), pages 1-18, March.
- José Antonio Moreira de Rezende & Reginaldo Gonçalves Leão Junior & Otávio de Souza Martins Gomes, 2024. "Scientometric Analysis of Publications on Household Electricity Theft and Energy Consumption Load Profiling in a Smart Grid Context," Sustainability, MDPI, vol. 16(22), pages 1-19, November.
- Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
- Jiakang Wang & Hui Liu & Guangji Zheng & Ye Li & Shi Yin, 2023. "Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning," Energies, MDPI, vol. 16(11), pages 1-16, May.
- Laouafi, Abderrezak & Laouafi, Farida & Boukelia, Taqiy Eddine, 2022. "An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting," Applied Energy, Elsevier, vol. 322(C).
- Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
- Davoodi, Shayan & Fereydooni, Ali & Rastegar, Mohammad Ali, 2024. "Can portfolio construction considering ESG still gain high profits?," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
- Zhaosheng Zhang & Shuo Wang & Ni Lin & Zhenpo Wang & Peng Liu, 2023. "State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles Based on Regional Capacity and LGBM," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
- Zhou, Kaile & Hu, Dingding & Li, Fangyi, 2022. "Impact of COVID-19 on private driving behavior: Evidence from electric vehicle charging data," Transport Policy, Elsevier, vol. 125(C), pages 164-178.
- Shi, Jiaqi & Li, Chenxi & Yan, Xiaohe, 2023. "Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization," Energy, Elsevier, vol. 262(PB).
- Leonardo Brain García Fernández & Anna Diva Plasencia Lotufo & Carlos Roberto Minussi, 2023. "Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy," Energies, MDPI, vol. 16(10), pages 1-30, May.
- Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
- Rai, Amit & Shrivastava, Ashish & Jana, Kartick C., 2023. "Differential attention net: Multi-directed differential attention based hybrid deep learning model for solar power forecasting," Energy, Elsevier, vol. 263(PC).
- Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
- Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
- Adela Bâra & Simona-Vasilica Oprea & Bogdan George Tudorică, 2024. "From the East-European Regional Day-Ahead Markets to a Global Electricity Market," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2525-2557, June.