IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i3d10.1007_s10260-024-00746-0.html
   My bibliography  Save this article

Stacking-based neural network for nonlinear time series analysis

Author

Listed:
  • Tharindu P. De Alwis

    (Worcester Polytechnic Institute)

  • S. Yaser Samadi

    (Southern Illinois University Carbondale)

Abstract

Stacked generalization is a commonly used technique for improving predictive accuracy by combining less expressive models using a high-level model. This paper introduces a stacked generalization scheme specifically designed for nonlinear time series models. Instead of selecting a single model using traditional model selection criteria, our approach stacks several nonlinear time series models from different classes and proposes a new generalization algorithm that minimizes prediction error. To achieve this, we utilize a feed-forward artificial neural network (FANN) model to generalize existing nonlinear time series models by stacking them. Network parameters are estimated using a backpropagation algorithm. We validate the proposed method using simulated examples and a real data application. The results demonstrate that our proposed stacked FANN model achieves a lower error and improves forecast accuracy compared to previous nonlinear time series models, resulting in a better fit to the original time series data.

Suggested Citation

  • Tharindu P. De Alwis & S. Yaser Samadi, 2024. "Stacking-based neural network for nonlinear time series analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 901-924, July.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:3:d:10.1007_s10260-024-00746-0
    DOI: 10.1007/s10260-024-00746-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-024-00746-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-024-00746-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    2. Mst. Shapna Akter & Hossain Shahriar & Reaz Chowdhury & M. R. C. Mahdy, 2022. "Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach," Future Internet, MDPI, vol. 14(9), pages 1-23, August.
    3. Florin Leon & Mihai Horia Zaharia, 2010. "Stacked Heterogeneous Neural Networks for Time Series Forecasting," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-20, May.
    4. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    5. Montgomery, Jacob M. & Hollenbach, Florian M. & Ward, Michael D., 2012. "Improving Predictions using Ensemble Bayesian Model Averaging," Political Analysis, Cambridge University Press, vol. 20(3), pages 271-291, July.
    6. Jin‐Hong Park & S. Yaser Samadi, 2020. "Dimension reduction for the conditional mean and variance functions in time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(1), pages 134-155, March.
    7. Massaoudi, Mohamed & Refaat, Shady S. & Chihi, Ines & Trabelsi, Mohamed & Oueslati, Fakhreddine S. & Abu-Rub, Haitham, 2021. "A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting," Energy, Elsevier, vol. 214(C).
    8. Xiangrong Yin & R. Dennis Cook, 2005. "Direction estimation in single-index regressions," Biometrika, Biometrika Trust, vol. 92(2), pages 371-384, June.
    9. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    10. Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Silva, Murilo & Sriram, T.N. & Ke, Yuan, 2023. "Dimension reduction in time series under the presence of conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. S. Yaser Samadi & Tharindu P. De Alwis, 2023. "Fourier Methods for Sufficient Dimension Reduction in Time Series," Papers 2312.02110, arXiv.org.
    3. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    4. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    5. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Li, Lexin, 2009. "Exploiting predictor domain information in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2665-2672, May.
    7. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    8. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    9. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    10. Iaci, Ross & Sriram, T.N., 2013. "Robust multivariate association and dimension reduction using density divergences," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 281-295.
    11. Tao, Chenyang & Feng, Jianfeng, 2017. "Canonical kernel dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 131-148.
    12. Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Rank-based inference for the single-index model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 535-541.
    13. Zhang, Chu & Hu, Haowen & Ji, Jie & Liu, Kang & Xia, Xin & Nazir, Muhammad Shahzad & Peng, Tian, 2023. "An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC," Applied Energy, Elsevier, vol. 330(PA).
    14. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
    15. Zhang, Hongfan, 2018. "Quasi-likelihood estimation of the single index conditional variance model," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 58-72.
    16. Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    17. Bhattacharya, Prasad S. & Thomakos, Dimitrios D., 2008. "Forecasting industry-level CPI and PPI inflation: Does exchange rate pass-through matter?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 134-150.
    18. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
    19. Albert J.F. Yang & William N. Trumbull & Chin Wei Yang & Bwo‐Nung Huang, 2011. "On The Relationship Between Military Expenditure, Threat, And Economic Growth: A Nonlinear Approach," Defence and Peace Economics, Taylor & Francis Journals, vol. 22(4), pages 449-457, April.
    20. Richard H. Clarida & Mark P. Taylor, 2003. "Nonlinear Permanent - Temporary Decompositions in Macroeconomics and Finance," Economic Journal, Royal Economic Society, vol. 113(486), pages 125-139, March.

    More about this item

    Keywords

    Stacked generalization; Cross-validation; Time series; Feed-forward artificial neural network (FANN); Backpropagation algorithm;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:3:d:10.1007_s10260-024-00746-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.