IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v19y1994i4p415-422.html
   My bibliography  Save this item

A new advanced power-generation system using chemical-looping combustion

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Shareq Mohd Nazir & Olav Bolland & Shahriar Amini, 2018. "Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO 2 Capture," Energies, MDPI, vol. 11(1), pages 1-13, January.
  2. Nomura, Takahiro & Sheng, Nan & Zhu, Chunyu & Saito, Genki & Hanzaki, Daiki & Hiraki, Takehito & Akiyama, Tomohiro, 2017. "Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation," Applied Energy, Elsevier, vol. 188(C), pages 9-18.
  3. Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
  4. Zhang, Na & Lior, Noam & Liu, Meng & Han, Wei, 2010. "COOLCEP (cool clean efficient power): A novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization," Energy, Elsevier, vol. 35(2), pages 1200-1210.
  5. Ishida, M. & Okuno, K., 2004. "Systematic analysis of biochemical processes in cells by applying graphical diagrams," Energy, Elsevier, vol. 29(12), pages 2461-2472.
  6. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
  7. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
  8. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2017. "A reduced fidelity model for the rotary chemical looping combustion reactor," Applied Energy, Elsevier, vol. 190(C), pages 725-739.
  9. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
  10. Jiménez Álvaro, Ángel & Urdiales Montesino, Álvaro & Sánchez Orgaz, Susana & González Fernández, Celina, 2017. "Thermodynamic analysis of a dual power-hydrogen production system based on chemical-looping combustion," Energy, Elsevier, vol. 137(C), pages 1075-1085.
  11. Kumar, Pawan & Kim, Ki-Hyun, 2016. "Recent progress and innovation in carbon capture and storage using bioinspired materials," Applied Energy, Elsevier, vol. 172(C), pages 383-397.
  12. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
  13. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
  14. Huang, Liang & Tang, Mingchen & Fan, Maohong & Cheng, Hansong, 2015. "Density functional theory study on the reaction between hematite and methane during chemical looping process," Applied Energy, Elsevier, vol. 159(C), pages 132-144.
  15. Zhang, Xiaosong & Han, Wei & Hong, Hui & Jin, Hongguang, 2009. "A chemical intercooling gas turbine cycle with chemical-looping combustion," Energy, Elsevier, vol. 34(12), pages 2131-2136.
  16. Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
  17. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2018. "Design and techno-economic optimization of a rotary chemical looping combustion power plant with CO2 capture," Applied Energy, Elsevier, vol. 231(C), pages 1179-1190.
  18. Liu, Xiangyu & Zhang, Hao & Hong, Hui & Jin, Hongguang, 2020. "Experimental study on honeycomb reactor using methane via chemical looping cycle for solar syngas," Applied Energy, Elsevier, vol. 268(C).
  19. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
  20. Schwebel, G.L. & Filippou, D. & Hudon, G. & Tworkowski, M. & Gipperich, A. & Krumm, W., 2014. "Experimental comparison of two different ilmenites in fluidized bed and fixed bed chemical-looping combustion," Applied Energy, Elsevier, vol. 113(C), pages 1902-1908.
  21. Zhu, Lin & He, Yangdong & Li, Luling & Wu, Pengbin, 2018. "Tech-economic assessment of second-generation CCS: Chemical looping combustion," Energy, Elsevier, vol. 144(C), pages 915-927.
  22. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
  23. Xu, Lei & Sun, Hongming & Li, Zhenshan & Cai, Ningsheng, 2016. "Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor," Applied Energy, Elsevier, vol. 162(C), pages 940-947.
  24. Wang, Jinsheng & Anthony, Edward J., 2008. "Clean combustion of solid fuels," Applied Energy, Elsevier, vol. 85(2-3), pages 73-79, February.
  25. Fan, Junming & Hong, Hui & Jin, Hongguang, 2018. "Biomass and coal co-feed power and SNG polygeneration with chemical looping combustion to reduce carbon footprint for sustainable energy development: Process simulation and thermodynamic assessment," Renewable Energy, Elsevier, vol. 125(C), pages 260-269.
  26. Jin, Hongguang & Gao, Lin & Han, Wei & Hong, Hui, 2010. "Prospect options of CO2 capture technology suitable for China," Energy, Elsevier, vol. 35(11), pages 4499-4506.
  27. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
  28. Ridha, Firas N. & Duchesne, Marc A. & Lu, Xuao & Lu, Dennis Y. & Filippou, Dimitrios & Hughes, Robin W., 2016. "Characterization of an ilmenite ore for pressurized chemical looping combustion," Applied Energy, Elsevier, vol. 163(C), pages 323-333.
  29. Zevenhoven, Maria & Sevonius, Christoffer & Salminen, Patrik & Lindberg, Daniel & Brink, Anders & Yrjas, Patrik & Hupa, Leena, 2018. "Defluidization of the oxygen carrier ilmenite – Laboratory experiments with potassium salts," Energy, Elsevier, vol. 148(C), pages 930-940.
  30. Huang, Zhen & He, Fang & Zheng, Anqing & Zhao, Kun & Chang, Sheng & Zhao, Zengli & Li, Haibin, 2013. "Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier," Energy, Elsevier, vol. 53(C), pages 244-251.
  31. Fernández, J.R. & Abanades, J.C., 2014. "Conceptual design of a Ni-based chemical looping combustion process using fixed-beds," Applied Energy, Elsevier, vol. 135(C), pages 309-319.
  32. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
  33. Zhang, Xiaosong & Jin, Hongguang, 2013. "Thermodynamic analysis of chemical-looping hydrogen generation," Applied Energy, Elsevier, vol. 112(C), pages 800-807.
  34. Zhang, Na & Lior, Noam, 2008. "Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture," Energy, Elsevier, vol. 33(2), pages 340-351.
  35. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
  36. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
  37. Jan-Erik Eriksson & Maria Zevenhoven & Patrik Yrjas & Anders Brink & Leena Hupa, 2022. "Corrosion of Heat Transfer Materials by Potassium-Contaminated Ilmenite Bed Particles in Chemical-Looping Combustion of Biomass," Energies, MDPI, vol. 15(8), pages 1-14, April.
  38. Xiaosong Zhang & Sheng Li & Hongguang Jin, 2014. "A Polygeneration System Based on Multi-Input Chemical Looping Combustion," Energies, MDPI, vol. 7(11), pages 1-12, November.
  39. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  40. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
  41. Lucia Blas & Patrick Dutournié & Mejdi Jeguirim & Ludovic Josien & David Chiche & Stephane Bertholin & Arnold Lambert, 2017. "Numerical Modeling of Oxygen Carrier Performances (NiO/NiAl 2 O 4 ) for Chemical-Looping Combustion," Energies, MDPI, vol. 10(7), pages 1-16, June.
  42. Liu, Xiangyu & Hong, Hui & Zhang, Hao & Cao, Yali & Qu, Wanjun & Jin, Hongguang, 2020. "Solar methanol by hybridizing natural gas chemical looping reforming with solar heat," Applied Energy, Elsevier, vol. 277(C).
  43. Liu, Feng & Liu, Jing & Li, Yu & Fang, Ruixue & Yang, Yingju, 2022. "Studies on the synergistically improved reactivity of spinel NiFe2O4 oxygen carrier for chemical-looping combustion," Energy, Elsevier, vol. 239(PB).
  44. Jiménez Álvaro, Ángel & Paniagua, Ignacio López & Fernández, Celina González & Carlier, Rafael Nieto & Martín, Javier Rodríguez, 2014. "Energetic analysis of a syngas-fueled chemical-looping combustion combined cycle with integration of carbon dioxide sequestration," Energy, Elsevier, vol. 76(C), pages 694-703.
  45. Medrano, J.A. & Hamers, H.P. & Williams, G. & van Sint Annaland, M. & Gallucci, F., 2015. "NiO/CaAl2O4 as active oxygen carrier for low temperature chemical looping applications," Applied Energy, Elsevier, vol. 158(C), pages 86-96.
  46. Li, Jichao & Han, Wei & Song, Xinyang & Li, Peijing & Wang, Zefeng & Jin, Hongguang, 2024. "Near-zero carbon emission power generation system enabled by staged coal gasification and chemical recuperation," Energy, Elsevier, vol. 306(C).
  47. Burdyny, Thomas & Struchtrup, Henning, 2010. "Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process," Energy, Elsevier, vol. 35(5), pages 1884-1897.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.