COOLCEP (cool clean efficient power): A novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2009.04.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kvamsdal, Hanne M. & Jordal, Kristin & Bolland, Olav, 2007. "A quantitative comparison of gas turbine cycles with CO2 capture," Energy, Elsevier, vol. 32(1), pages 10-24.
- Lior, Noam & Zhang, Na, 2007. "Energy, exergy, and Second Law performance criteria," Energy, Elsevier, vol. 32(4), pages 281-296.
- Kim, T.S & Ro, S.T, 2000. "Power augmentation of combined cycle power plants using cold energy of liquefied natural gas," Energy, Elsevier, vol. 25(9), pages 841-856.
- Deng, Shimin & Jin, Hongguang & Cai, Ruixian & Lin, Rumou, 2004. "Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization," Energy, Elsevier, vol. 29(4), pages 497-512.
- Zhang, Na & Lior, Noam, 2006. "A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization," Energy, Elsevier, vol. 31(10), pages 1666-1679.
- Ishida, Masaru & Jin, Hongguang, 1994. "A new advanced power-generation system using chemical-looping combustion," Energy, Elsevier, vol. 19(4), pages 415-422.
- Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Na & Lior, Noam, 2008. "Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture," Energy, Elsevier, vol. 33(2), pages 340-351.
- Romero Gómez, Manuel & Romero Gómez, Javier & López-González, Luis M. & López-Ochoa, Luis M., 2016. "Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture," Energy, Elsevier, vol. 105(C), pages 32-44.
- Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
- Choi, In-Hwan & Lee, Sangick & Seo, Yutaek & Chang, Daejun, 2013. "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 61(C), pages 179-195.
- Tan, Hongbo & Li, Yanzhong & Tuo, Hanfei & Zhou, Man & Tian, Baocong, 2010. "Experimental study on liquid/solid phase change for cold energy storage of Liquefied Natural Gas (LNG) refrigerated vehicle," Energy, Elsevier, vol. 35(5), pages 1927-1935.
- Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
- Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
- Romero Gómez, M. & Ferreiro Garcia, R. & Romero Gómez, J. & Carbia Carril, J., 2014. "Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 781-795.
- Pattanayak, Lalatendu & Padhi, Biranchi Narayana, 2018. "Thermodynamic analysis of combined cycle power plant using regasification cold energy from LNG terminal," Energy, Elsevier, vol. 164(C), pages 1-9.
- Burdyny, Thomas & Struchtrup, Henning, 2010. "Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process," Energy, Elsevier, vol. 35(5), pages 1884-1897.
- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
- Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
- Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink," Energy, Elsevier, vol. 50(C), pages 513-522.
- He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
- Mohd Amin Abd Majid & Hamdan Haji Ya & Othman Mamat & Shuhaimi Mahadzir, 2019. "Techno Economic Evaluation of Cold Energy from Malaysian Liquefied Natural Gas Regasification Terminals," Energies, MDPI, vol. 12(23), pages 1-14, November.
- Lee, Ung & Mitsos, Alexander, 2017. "Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification," Energy, Elsevier, vol. 127(C), pages 489-501.
- Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
- Lee, Sangick, 2017. "Multi-parameter optimization of cold energy recovery in cascade Rankine cycle for LNG regasification using genetic algorithm," Energy, Elsevier, vol. 118(C), pages 776-782.
- Liu, Yanni & Guo, Kaihua, 2011. "A novel cryogenic power cycle for LNG cold energy recovery," Energy, Elsevier, vol. 36(5), pages 2828-2833.
More about this item
Keywords
Oxy-fuel power system; LNG; Coldness energy; Power generation; CO2 capture;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:1200-1210. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.