IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp309-319.html
   My bibliography  Save this article

Conceptual design of a Ni-based chemical looping combustion process using fixed-beds

Author

Listed:
  • Fernández, J.R.
  • Abanades, J.C.

Abstract

This work presents a comprehensive conceptual design of a Ni-based chemical looping combustion process (CLC) carried out in fixed bed reactors. The process is intended to exploit the well-known advantages of the Ni/NiO redox system for CLC applications in terms of high reactivity, O2 carrying capacity and chemical and thermal stability. Solutions to the problem of heat management in fixed bed reactors at high temperature and high pressure are described, while a continuous flow of nitrogen for driving a gas turbine is produced. Each reactor involved in the process goes through a cyclic sequence of five reaction and heat transfer stages. Cool product gas recirculations are incorporated into the Ni oxidation and NiO reduction stages in order to moderate the maximum temperatures in the beds and control the displacement of the reaction and heat transfer fronts. A preliminary conceptual design of the process has been carried out to determine the minimum number of reactors needed for continuous operation in typical large-scale CO2 capture systems. Basic reactor models and assumptions based on an ideal plug flow pattern have been used in all the reactors during the chemical reactions and the heat transfer operations. This has made it possible to identify reasonable operating windows for the eight fixed-bed reactors that make up the CO2 capture system, and has demonstrated not only its technical viability but also its great potential for further development.

Suggested Citation

  • Fernández, J.R. & Abanades, J.C., 2014. "Conceptual design of a Ni-based chemical looping combustion process using fixed-beds," Applied Energy, Elsevier, vol. 135(C), pages 309-319.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:309-319
    DOI: 10.1016/j.apenergy.2014.08.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez, Jose Ramon & Abanades, Juan Carlos & Murillo, Ramon, 2014. "Modeling of Cu oxidation in an adiabatic fixed-bed reactor with N2 recycling," Applied Energy, Elsevier, vol. 113(C), pages 1945-1951.
    2. Martínez, I. & Romano, M.C. & Fernández, J.R. & Chiesa, P. & Murillo, R. & Abanades, J.C., 2014. "Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop," Applied Energy, Elsevier, vol. 114(C), pages 192-208.
    3. Naqvi, Rehan & Wolf, Jens & Bolland, Olav, 2007. "Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO2 capture," Energy, Elsevier, vol. 32(4), pages 360-370.
    4. Ishida, Masaru & Jin, Hongguang, 1994. "A new advanced power-generation system using chemical-looping combustion," Energy, Elsevier, vol. 19(4), pages 415-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khosa, Azhar Abbas & Han, Xinyue & Zhao, C.Y., 2024. "Experimental investigation of CaCO3/CaO reaction pair in a fixed bed reactor for CSP application," Renewable Energy, Elsevier, vol. 221(C).
    2. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    3. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2017. "A reduced fidelity model for the rotary chemical looping combustion reactor," Applied Energy, Elsevier, vol. 190(C), pages 725-739.
    4. Penthor, Stefan & Zerobin, Florian & Mayer, Karl & Pröll, Tobias & Hofbauer, Hermann, 2015. "Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120kW pilot plant for gaseous fuels," Applied Energy, Elsevier, vol. 145(C), pages 52-59.
    5. Han, Lu & Bollas, George M., 2016. "Chemical-looping combustion in a reverse-flow fixed bed reactor," Energy, Elsevier, vol. 102(C), pages 669-681.
    6. Cabello, Arturo & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2021. "Increasing energy efficiency in chemical looping combustion of methane by in-situ activation of perovskite-based oxygen carriers," Applied Energy, Elsevier, vol. 287(C).
    7. Diego, M.E. & Abanades, J.C., 2020. "Techno-economic analysis of a low carbon back-up power system using chemical looping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    9. Gu, Zhenhua & Li, Kongzhai & Wang, Hua & Qing, Shan & Zhu, Xing & Wei, Yonggang & Cheng, Xianming & Yu, He & Cao, Yan, 2016. "Bulk monolithic Ce–Zr–Fe–O/Al2O3 oxygen carriers for a fixed bed scheme of the chemical looping combustion: Reactivity of oxygen carrier," Applied Energy, Elsevier, vol. 163(C), pages 19-31.
    10. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
    11. Han, Lu & Bollas, George M., 2016. "Dynamic optimization of fixed bed chemical-looping combustion processes," Energy, Elsevier, vol. 112(C), pages 1107-1119.
    12. Yan, J. & Zhao, C.Y., 2016. "Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage," Applied Energy, Elsevier, vol. 175(C), pages 277-284.
    13. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    2. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    3. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Han, Lu & Bollas, George M., 2016. "Chemical-looping combustion in a reverse-flow fixed bed reactor," Energy, Elsevier, vol. 102(C), pages 669-681.
    5. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2017. "A reduced fidelity model for the rotary chemical looping combustion reactor," Applied Energy, Elsevier, vol. 190(C), pages 725-739.
    6. Shareq Mohd Nazir & Olav Bolland & Shahriar Amini, 2018. "Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO 2 Capture," Energies, MDPI, vol. 11(1), pages 1-13, January.
    7. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2018. "Design and techno-economic optimization of a rotary chemical looping combustion power plant with CO2 capture," Applied Energy, Elsevier, vol. 231(C), pages 1179-1190.
    8. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
    9. Han, Lu & Bollas, George M., 2016. "Dynamic optimization of fixed bed chemical-looping combustion processes," Energy, Elsevier, vol. 112(C), pages 1107-1119.
    10. Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
    11. Zhu, Lin & He, Yangdong & Li, Luling & Wu, Pengbin, 2018. "Tech-economic assessment of second-generation CCS: Chemical looping combustion," Energy, Elsevier, vol. 144(C), pages 915-927.
    12. Huang, Zhen & He, Fang & Zheng, Anqing & Zhao, Kun & Chang, Sheng & Zhao, Zengli & Li, Haibin, 2013. "Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier," Energy, Elsevier, vol. 53(C), pages 244-251.
    13. Bartocci, Pietro & Abad, Alberto & Mattisson, Tobias & Cabello, Arturo & Loscertales, Margarita de las Obras & Negredo, Teresa Mendiara & Zampilli, Mauro & Taiana, Andrea & Serra, Angela & Arauzo, Inm, 2022. "Bioenergy with Carbon Capture and Storage (BECCS) developed by coupling a Pressurised Chemical Looping combustor with a turbo expander: How to optimize plant efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Zhang, Xiaosong & Han, Wei & Hong, Hui & Jin, Hongguang, 2009. "A chemical intercooling gas turbine cycle with chemical-looping combustion," Energy, Elsevier, vol. 34(12), pages 2131-2136.
    15. Li, Yingjie & Zhao, Changsui & Chen, Huichao & Ren, Qiangqiang & Duan, Lunbo, 2011. "CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle," Energy, Elsevier, vol. 36(3), pages 1590-1598.
    16. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    17. Bhavsar, Saurabh & Isenberg, Natalie & More, Amey & Veser, Götz, 2016. "Lanthana-doped ceria as active support for oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 168(C), pages 236-247.
    18. Cloete, Schalk & Zaabout, Abdelghafour & Romano, Matteo C. & Chiesa, Paolo & Lozza, Giovanni & Gallucci, Fausto & van Sint Annaland, Martin & Amini, Shahriar, 2017. "Optimization of a Gas Switching Combustion process through advanced heat management strategies," Applied Energy, Elsevier, vol. 185(P2), pages 1459-1470.
    19. Wang, Jinsheng & Anthony, Edward J., 2008. "Clean combustion of solid fuels," Applied Energy, Elsevier, vol. 85(2-3), pages 73-79, February.
    20. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:309-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.