IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v160y2018icp466-477.html
   My bibliography  Save this item

Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wen, Jianping & Chen, Xing & Li, Xianghe & Li, Yikun, 2022. "SOH prediction of lithium battery based on IC curve feature and BP neural network," Energy, Elsevier, vol. 261(PA).
  2. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
  3. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
  4. Ma, Qiuhui & Zheng, Ying & Yang, Weidong & Zhang, Yong & Zhang, Hong, 2021. "Remaining useful life prediction of lithium battery based on capacity regeneration point detection," Energy, Elsevier, vol. 234(C).
  5. Sahar Khaleghi & Yousef Firouz & Maitane Berecibar & Joeri Van Mierlo & Peter Van Den Bossche, 2020. "Ensemble Gradient Boosted Tree for SoH Estimation Based on Diagnostic Features," Energies, MDPI, vol. 13(5), pages 1-16, March.
  6. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
  7. Jinhyeong Park & Munsu Lee & Gunwoo Kim & Seongyun Park & Jonghoon Kim, 2020. "Integrated Approach Based on Dual Extended Kalman Filter and Multivariate Autoregressive Model for Predicting Battery Capacity Using Health Indicator and SOC/SOH," Energies, MDPI, vol. 13(9), pages 1-20, April.
  8. Zhang, Xiaoxi & Pan, Yongjun & Zhou, Junxiao & Li, Zhixiong & Liao, Tianjun & Li, Jie, 2024. "Forward and reverse design of adhesive in batteries via dynamics and machine learning algorithms for enhanced mechanical safety," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  9. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
  10. Theissler, Andreas & Pérez-Velázquez, Judith & Kettelgerdes, Marcel & Elger, Gordon, 2021. "Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  11. Li, Yi & Zou, Changfu & Berecibar, Maitane & Nanini-Maury, Elise & Chan, Jonathan C.-W. & van den Bossche, Peter & Van Mierlo, Joeri & Omar, Noshin, 2018. "Random forest regression for online capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 232(C), pages 197-210.
  12. Khaleghi, Sahar & Karimi, Danial & Beheshti, S. Hamidreza & Hosen, Md. Sazzad & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network," Applied Energy, Elsevier, vol. 282(PA).
  13. Xu, Tingting & Peng, Zhen & Wu, Lifeng, 2021. "A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current," Energy, Elsevier, vol. 218(C).
  14. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
  15. Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
  16. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
  17. Singh, Karanjot & Tjahjowidodo, Tegoeh & Boulon, Loïc & Feroskhan, Mir, 2022. "Framework for measurement of battery state-of-health (resistance) integrating overpotential effects and entropy changes using energy equilibrium," Energy, Elsevier, vol. 239(PA).
  18. Zhang, Chaolong & Luo, Laijin & Yang, Zhong & Du, Bolun & Zhou, Ziheng & Wu, Ji & Chen, Liping, 2024. "Flexible method for estimating the state of health of lithium-ion batteries using partial charging segments," Energy, Elsevier, vol. 295(C).
  19. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  20. Ma’d El-Dalahmeh & Maher Al-Greer & Mo’ath El-Dalahmeh & Michael Short, 2020. "Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 13(20), pages 1-19, October.
  21. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
  22. Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
  23. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  24. Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
  25. Zhou, Yanting & Wang, Yanan & Wang, Kai & Kang, Le & Peng, Fei & Wang, Licheng & Pang, Jinbo, 2020. "Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors," Applied Energy, Elsevier, vol. 260(C).
  26. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
  27. Jiakun An & Wei Guo & Tingyan Lv & Ziheng Zhao & Chunguang He & Hongshan Zhao, 2023. "Joint Prediction of the State of Charge and the State of Health of Lithium-Ion Batteries Based on the PSO-XGBoost Algorithm," Energies, MDPI, vol. 16(10), pages 1-14, May.
  28. Zhang, Zhendong & Kong, Xiangdong & Zheng, Yuejiu & Zhou, Long & Lai, Xin, 2019. "Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters," Energy, Elsevier, vol. 166(C), pages 1013-1024.
  29. Li, Yang & Wang, Shunli & Chen, Lei & Qi, Chuangshi & Fernandez, Carlos, 2023. "Multiple layer kernel extreme learning machine modeling and eugenics genetic sparrow search algorithm for the state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 282(C).
  30. Ethelbert Ezemobi & Andrea Tonoli & Mario Silvagni, 2021. "Battery State of Health Estimation with Improved Generalization Using Parallel Layer Extreme Learning Machine," Energies, MDPI, vol. 14(8), pages 1-15, April.
  31. Chen, Lin & Wang, Huimin & Liu, Bohao & Wang, Yijue & Ding, Yunhui & Pan, Haihong, 2021. "Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation," Energy, Elsevier, vol. 215(PA).
  32. Khaleghi, Sahar & Hosen, Md Sazzad & Karimi, Danial & Behi, Hamidreza & Beheshti, S. Hamidreza & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "Developing an online data-driven approach for prognostics and health management of lithium-ion batteries," Applied Energy, Elsevier, vol. 308(C).
  33. Yong Tian & Qianyuan Dong & Jindong Tian & Xiaoyu Li, 2023. "Capacity Estimation of Lithium-Ion Batteries Based on Multiple Small Voltage Sections and BP Neural Networks," Energies, MDPI, vol. 16(2), pages 1-18, January.
  34. Shu, Xing & Shen, Jiangwei & Chen, Zheng & Zhang, Yuanjian & Liu, Yonggang & Lin, Yan, 2022. "Remaining capacity estimation for lithium-ion batteries via co-operation of multi-machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  35. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  36. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  37. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  38. Piotr Szewczyk & Andrzej Łebkowski, 2022. "Comparative Studies on Batteries for the Electrochemical Energy Storage in the Delivery Vehicle," Energies, MDPI, vol. 15(24), pages 1-28, December.
  39. Park, Jinhyeong & Kim, Kunwoo & Park, Seongyun & Baek, Jongbok & Kim, Jonghoon, 2021. "Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications," Energy, Elsevier, vol. 232(C).
  40. Matthieu Dubarry & David Beck, 2021. "Analysis of Synthetic Voltage vs. Capacity Datasets for Big Data Li-ion Diagnosis and Prognosis," Energies, MDPI, vol. 14(9), pages 1-24, April.
  41. Jen-Hao Teng & Rong-Jhang Chen & Ping-Tse Lee & Che-Wei Hsu, 2023. "Accurate and Efficient SOH Estimation for Retired Batteries," Energies, MDPI, vol. 16(3), pages 1-17, January.
  42. Ma, Yan & Li, Jiaqi & Gao, Jinwu & Chen, Hong, 2024. "State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature," Energy, Elsevier, vol. 295(C).
  43. Yang, Bo & Guo, Zhengxun & Yang, Yi & Chen, Yijun & Zhang, Rui & Su, Keyi & Shu, Hongchun & Yu, Tao & Zhang, Xiaoshun, 2021. "Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells," Applied Energy, Elsevier, vol. 303(C).
  44. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
  45. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation," Energy, Elsevier, vol. 207(C).
  46. Jiang, Nanhua & Zhang, Jiawei & Jiang, Weiran & Ren, Yao & Lin, Jing & Khoo, Edwin & Song, Ziyou, 2024. "Driving behavior-guided battery health monitoring for electric vehicles using extreme learning machine," Applied Energy, Elsevier, vol. 364(C).
  47. Chen, Lin & Ding, Yunhui & Liu, Bohao & Wu, Shuxiao & Wang, Yaodong & Pan, Haihong, 2022. "Remaining useful life prediction of lithium-ion battery using a novel particle filter framework with grey neural network," Energy, Elsevier, vol. 244(PA).
  48. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
  49. Qian, Cheng & Xu, Binghui & Chang, Liang & Sun, Bo & Feng, Qiang & Yang, Dezhen & Ren, Yi & Wang, Zili, 2021. "Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries," Energy, Elsevier, vol. 227(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.