IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1240-d1044929.html
   My bibliography  Save this article

Accurate and Efficient SOH Estimation for Retired Batteries

Author

Listed:
  • Jen-Hao Teng

    (Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan)

  • Rong-Jhang Chen

    (Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan)

  • Ping-Tse Lee

    (Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan)

  • Che-Wei Hsu

    (Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan)

Abstract

There will be an increasing number of retired batteries in the foreseeable future. Retired batteries can reduce pollution and be used to construct a battery cycle ecosystem. To use retired batteries more efficiently, it is critical to be able to determine their State of Health (SOH) precisely and speedily. SOH can be estimated accurately through a comprehensive and inefficient charge-and-discharge procedure. However, the comprehensive charge and discharge is a time-consuming process and will make the SOH assessment for many retired batteries unrealistic. This paper proposes an accurate and efficient SOH Estimation (SOH-E) method using the actual data of retired batteries. A battery data acquisition system is designed to acquire retired batteries’ comprehensive discharge and charge data. The acquired discharge data are separated into various time interval-segregated sub-data. Then, the specially designed features for SOH-E are extracted from the sub-data. Neural Networks (NNs) are trained using these sub-data. The retired batteries’ SOH levels are then estimated after the NNs’ training. The experiments described herein use retired lead–acid batteries. The batteries’ rated voltage and capacity are 12 V and 90 Ah, respectively. Different feature value extractions and time intervals that might affect the SOH-E accuracy and are tested. The Backpropagation NN (BPNN) and Long-Short-Term-Memory NN (LSTMNN) are designed to estimate SOH in this paper. The experimental results indicate that SOH can be calculated in 30 min. The Root-Mean-Square Errors (RMSEs) are less than 3%. The proposed SOH-E can help decrease pollution, extend the life cycle of a retired battery, and establish a battery cycle ecosystem.

Suggested Citation

  • Jen-Hao Teng & Rong-Jhang Chen & Ping-Tse Lee & Che-Wei Hsu, 2023. "Accurate and Efficient SOH Estimation for Retired Batteries," Energies, MDPI, vol. 16(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1240-:d:1044929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan, Haihong & Lü, Zhiqiang & Wang, Huimin & Wei, Haiyan & Chen, Lin, 2018. "Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine," Energy, Elsevier, vol. 160(C), pages 466-477.
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    3. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
    4. Wang, Shunli & Takyi-Aninakwa, Paul & Jin, Siyu & Yu, Chunmei & Fernandez, Carlos & Stroe, Daniel-Ioan, 2022. "An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    2. Ge, Dongdong & Jin, Guiyang & Wang, Jianqiang & Zhang, Zhendong, 2024. "A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries," Energy, Elsevier, vol. 305(C).
    3. Kai-Rong Lin & Chien-Chung Huang & Kin-Cheong Sou, 2023. "Lithium-Ion Battery State of Health Estimation Using Simple Regression Model Based on Incremental Capacity Analysis Features," Energies, MDPI, vol. 16(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Song & Zhisheng Zhang, 2023. "Research on Multiple Load Short-Term Forecasting Model of Integrated Energy Distribution System Based on Mogrifier-Quantum Weighted MELSTM," Energies, MDPI, vol. 16(9), pages 1-13, April.
    2. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Yong Tian & Qianyuan Dong & Jindong Tian & Xiaoyu Li, 2023. "Capacity Estimation of Lithium-Ion Batteries Based on Multiple Small Voltage Sections and BP Neural Networks," Energies, MDPI, vol. 16(2), pages 1-18, January.
    4. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
    5. Yang, Bowen & Wang, Dafang & Sun, Xu & Chen, Shiqin & Wang, Xingcheng, 2023. "Offline order recognition for state estimation of Lithium-ion battery using fractional order model," Applied Energy, Elsevier, vol. 341(C).
    6. Xu, Xiaodong & Tang, Shengjin & Han, Xuebing & Lu, Languang & Wu, Yu & Yu, Chuanqiang & Sun, Xiaoyan & Xie, Jian & Feng, Xuning & Ouyang, Minggao, 2023. "Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Carlo Villante, 2023. "A Novel SW Tool for the Evaluation of Expected Benefits of V2H Charging Devices Utilization in V2B Building Contexts," Energies, MDPI, vol. 16(7), pages 1-25, March.
    8. Xue, Jingsong & Ma, Wentao & Feng, Xiaoyang & Guo, Peng & Guo, Yaosong & Hu, Xianzhi & Chen, Badong, 2023. "Stacking integrated learning model via ELM and GRU with mixture correntropy loss for robust state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 284(C).
    9. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    10. Park, Jinhyeong & Kim, Kunwoo & Park, Seongyun & Baek, Jongbok & Kim, Jonghoon, 2021. "Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications," Energy, Elsevier, vol. 232(C).
    11. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation," Energy, Elsevier, vol. 207(C).
    12. Wang, Limei & Jin, Mengjie & Cai, Yingfeng & Lian, Yubo & Zhao, Xiuliang & Wang, Ruochen & Qiao, Sibing & Chen, Long & Yan, Xueqing, 2023. "Construction of electrochemical model for high C-rate conditions in lithium-ion battery based on experimental analogy method," Energy, Elsevier, vol. 279(C).
    13. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Wu, Lifeng & Zhang, Yu, 2023. "Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery," Energy, Elsevier, vol. 268(C).
    15. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    16. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    17. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    18. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    19. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    20. Choon Kit Chan & Chi Hong Chung & Jeyagopi Raman, 2023. "Optimizing Thermal Management System in Electric Vehicle Battery Packs for Sustainable Transportation," Sustainability, MDPI, vol. 15(15), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1240-:d:1044929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.