IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v44y2012icp331-340.html
   My bibliography  Save this item

A sustainable scenario for Venezuelan power generation sector in 2050 and its costs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Luis Rivera-González & David Bolonio & Luis F. Mazadiego & Robert Valencia-Chapi, 2019. "Long-Term Electricity Supply and Demand Forecast (2018–2040): A LEAP Model Application towards a Sustainable Power Generation System in Ecuador," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
  2. Mahumane, Gilberto & Mulder, Peter, 2016. "Introducing MOZLEAP: An integrated long-run scenario model of the emerging energy sector of Mozambique," Energy Economics, Elsevier, vol. 59(C), pages 275-289.
  3. de Souza, T.A.Z. & Pinto, G.M. & Julio, A.A.V. & Coronado, C.J.R. & Perez-Herrera, R. & Siqueira, B.O.P.S. & da Costa, R.B.R. & Roberts, J.J. & Palacio, J.C.E., 2022. "Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  4. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
  5. Vidoza, Jorge A. & Gallo, Waldyr L.R., 2016. "Projection of fossil fuels consumption in the Venezuelan electricity generation industry," Energy, Elsevier, vol. 104(C), pages 237-249.
  6. Rahman, Md. Mizanur & Paatero, Jukka V. & Lahdelma, Risto & A. Wahid, Mazlan, 2016. "Multicriteria-based decision aiding technique for assessing energy policy elements-demonstration to a case in Bangladesh," Applied Energy, Elsevier, vol. 164(C), pages 237-244.
  7. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
  8. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Sustainability and design assessment of rural hybrid microgrids in Venezuela," Energy, Elsevier, vol. 159(C), pages 229-242.
  9. Drielli Peyerl & Mariana Oliveira Barbosa & Mariana Ciotta & Maria Rogieri Pelissari & Evandro Mateus Moretto, 2022. "Linkages between the Promotion of Renewable Energy Policies and Low-Carbon Transition Trends in South America’s Electricity Sector," Energies, MDPI, vol. 15(12), pages 1-18, June.
  10. Pietrosemoli, Licia & Rodríguez-Monroy, Carlos, 2019. "The Venezuelan energy crisis: Renewable energies in the transition towards sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 415-426.
  11. Alotaish Mohammed Saud M. & Ping Guo & Ihtisham ul Haq & Guoqin Pan & Alam Khan, 2019. "Do government expenditure and financial development impede environmental degradation in Venezuela?," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-13, January.
  12. Fonseca, Jimeno A. & Schlueter, Arno, 2013. "Novel approach for decentralized energy supply and energy storage of tall buildings in Latin America based on renewable energy sources: Case study – Informal vertical community Torre David, Caracas – ," Energy, Elsevier, vol. 53(C), pages 93-105.
  13. Kachoee, Mohammad Sadegh & Salimi, Mohsen & Amidpour, Majid, 2018. "The long-term scenario and greenhouse gas effects cost-benefit analysis of Iran's electricity sector," Energy, Elsevier, vol. 143(C), pages 585-596.
  14. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
  15. Ana María González & Harrison Sandoval & Pilar Acosta & Felipe Henao, 2016. "On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
  16. Andres F. Paez & Yecid Mu oz Maldonado & Adalberto Ospino Castro, 2017. "Future Scenarios and Trends of Energy Demand in Colombia using Long-range Energy Alternative Planning," International Journal of Energy Economics and Policy, Econjournals, vol. 7(5), pages 178-190.
  17. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
  18. Robalino-López, Andrés & Mena-Nieto, Ángel & García-Ramos, José-Enrique & Golpe, Antonio A., 2015. "Studying the relationship between economic growth, CO2 emissions, and the environmental Kuznets curve in Venezuela (1980–2025)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 602-614.
  19. Cremonez, Paulo André & Feroldi, Michael & Feiden, Armin & Gustavo Teleken, Joel & José Gris, Diego & Dieter, Jonathan & de Rossi, Eduardo & Antonelli, Jhonatas, 2015. "Current scenario and prospects of use of liquid biofuels in South America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 352-362.
  20. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
  21. Aryanpur, Vahid & Shafiei, Ehsan, 2015. "Optimal deployment of renewable electricity technologies in Iran and implications for emissions reductions," Energy, Elsevier, vol. 91(C), pages 882-893.
  22. Koo, Choongwan & Kim, Hyunjoong & Hong, Taehoon, 2014. "Framework for the analysis of the low-carbon scenario 2020 to achieve the national carbon Emissions reduction target: Focused on educational facilities," Energy Policy, Elsevier, vol. 73(C), pages 356-367.
  23. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
  24. Awopone, Albert K. & Zobaa, Ahmed F. & Banuenumah, Walter, 2017. "Techno-economic and environmental analysis of power generation expansion plan of Ghana," Energy Policy, Elsevier, vol. 104(C), pages 13-22.
  25. Mahumane, Gilberto & Mulder, Peter, 2019. "Expanding versus greening? Long-term energy and emission transitions in Mozambique," Energy Policy, Elsevier, vol. 126(C), pages 145-156.
  26. Kemausuor, Francis & Nygaard, Ivan & Mackenzie, Gordon, 2015. "Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model," Energy, Elsevier, vol. 93(P1), pages 672-682.
  27. de Moura, Gustavo Nikolaus Pinto & Legey, Luiz Fernando Loureiro & Howells, Mark, 2018. "A Brazilian perspective of power systems integration using OSeMOSYS SAMBA – South America Model Base – and the bargaining power of neighbouring countries: A cooperative games approach," Energy Policy, Elsevier, vol. 115(C), pages 470-485.
  28. Pietrosemoli, Licia & Rodríguez Monroy, Carlos, 2013. "The impact of sustainable construction and knowledge management on sustainability goals. A review of the Venezuelan renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 683-691.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.