IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v115y2018icp470-485.html
   My bibliography  Save this article

A Brazilian perspective of power systems integration using OSeMOSYS SAMBA – South America Model Base – and the bargaining power of neighbouring countries: A cooperative games approach

Author

Listed:
  • de Moura, Gustavo Nikolaus Pinto
  • Legey, Luiz Fernando Loureiro
  • Howells, Mark

Abstract

This paper intends to contribute to a better understanding of both advantages and drawbacks of power systems interconnection processes between Brazil and its South American neighbours. Based on data available in national and international reports, three scenarios for the power supply sector expansion were modelled in OSeMOSYS. The Brazilian perspective of power integration considers funding strategic hydro projects in Argentina, Bolivia, Guyana and Peru. An alternative to the power integration process considers higher penetration of distributed photovoltaics and biogas power plants as well as lower hydro capacity expansion in Brazil. Features related to costs, carbon emissions, hydro reservoirs, technological performance, electricity demand, population growth, time zones and reserve margin were considered. The comparison of different scenarios provides insights regarding the contribution of renewable energy generation and sheds light on cross-border trade perspectives between Brazil and other countries in South America. Using a cooperative games approach, the bargaining power of each country (player) was calculated by applying the Shapley value concept. Argentina, Brazil, Paraguay, Peru and Guyana have the largest bargaining power, either as exporter or importer.

Suggested Citation

  • de Moura, Gustavo Nikolaus Pinto & Legey, Luiz Fernando Loureiro & Howells, Mark, 2018. "A Brazilian perspective of power systems integration using OSeMOSYS SAMBA – South America Model Base – and the bargaining power of neighbouring countries: A cooperative games approach," Energy Policy, Elsevier, vol. 115(C), pages 470-485.
  • Handle: RePEc:eee:enepol:v:115:y:2018:i:c:p:470-485
    DOI: 10.1016/j.enpol.2018.01.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518300521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.01.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hira, Anil & Amaya, Libardo, 2003. "Does energy integrate?," Energy Policy, Elsevier, vol. 31(2), pages 185-199, January.
    2. Kleinberg, Norman L. & Weiss, Jeffrey H., 1985. "A new formula for the Shapley value," Economics Letters, Elsevier, vol. 17(4), pages 311-315.
    3. Tundisi, J.G. & Goldemberg, J. & Matsumura-Tundisi, T. & Saraiva, A.C.F., 2014. "How many more dams in the Amazon?," Energy Policy, Elsevier, vol. 74(C), pages 703-708.
    4. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    5. Arango, Santiago & Larsen, Erik R., 2010. "The environmental paradox in generation: How South America is gradually becoming more dependent on thermal generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2956-2965, December.
    6. Cabrera-Palmer, Belkis & Rothwell, Geoffrey, 2008. "Why is Brazil enriching uranium?," Energy Policy, Elsevier, vol. 36(7), pages 2570-2577, July.
    7. Banez-Chicharro, Fernando & Olmos, Luis & Ramos, Andres & Latorre, Jesus M., 2017. "Estimating the benefits of transmission expansion projects: An Aumann-Shapley approach," Energy, Elsevier, vol. 118(C), pages 1044-1054.
    8. Pierru, Axel, 2007. "Allocating the CO2 emissions of an oil refinery with Aumann-Shapley prices," Energy Economics, Elsevier, vol. 29(3), pages 563-577, May.
    9. Bautista, Santiago, 2012. "A sustainable scenario for Venezuelan power generation sector in 2050 and its costs," Energy Policy, Elsevier, vol. 44(C), pages 331-340.
    10. J. Bilbao & J. Fernández & A. Losada & J. López, 2000. "Generating functions for computing power indices efficiently," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 191-213, December.
    11. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, April.
    12. Sauma, Enzo & Jerardino, Samuel & Barria, Carlos & Marambio, Rodrigo & Brugman, Alberto & Mejía, José, 2011. "Electric-systems integration in the Andes community: Opportunities and threats," Energy Policy, Elsevier, vol. 39(2), pages 936-949, February.
    13. de Carvalho, Joaquim F. & Sauer, Ildo L., 2009. "Does Brazil need new nuclear power plants?," Energy Policy, Elsevier, vol. 37(4), pages 1580-1584, April.
    14. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    15. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    16. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    17. Kleinberg, Norman L. & Weiss, Jeffrey H., 1986. "Weak values, the core, and new axioms for the Shapley value," Mathematical Social Sciences, Elsevier, vol. 12(1), pages 21-30, August.
    18. Ochoa, Camila & Dyner, Isaac & Franco, Carlos J., 2013. "Simulating power integration in Latin America to assess challenges, opportunities, and threats," Energy Policy, Elsevier, vol. 61(C), pages 267-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Churkin, Andrey & Bialek, Janusz & Pozo, David & Sauma, Enzo & Korgin, Nikolay, 2021. "Review of Cooperative Game Theory applications in power system expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    4. Dranka, Géremi Gilson & Ferreira, Paula, 2018. "Planning for a renewable future in the Brazilian power system," Energy, Elsevier, vol. 164(C), pages 496-511.
    5. Leibowicz, Benjamin D. & Lanham, Christopher M. & Brozynski, Max T. & Vázquez-Canteli, José R. & Castejón, Nicolás Castillo & Nagy, Zoltan, 2018. "Optimal decarbonization pathways for urban residential building energy services," Applied Energy, Elsevier, vol. 230(C), pages 1311-1325.
    6. Pedro Gerber Machado & Dominique Mouette & Luz D. Villanueva & A. Ricardo Esparta & Bruno Mendes Leite & Edmilson Moutinho dos Santos, 2019. "Energy systems modeling: Trends in research publication," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
    7. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2020. "Cost-effectiveness of energy efficiency investments for high renewable electricity systems," Energy, Elsevier, vol. 198(C).
    8. Daniel Icaza-Alvarez & Nestor Daniel Galan-Hernandez & Eber Enrique Orozco-Guillen & Francisco Jurado, 2023. "Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050," Energies, MDPI, vol. 16(20), pages 1-26, October.
    9. Ioannis Pappis & Andreas Sahlberg & Tewodros Walle & Oliver Broad & Elusiyan Eludoyin & Mark Howells & Will Usher, 2021. "Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning," Energies, MDPI, vol. 14(4), pages 1-36, February.
    10. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "Integrating supply and demand-side management in renewable-based energy systems," Energy, Elsevier, vol. 232(C).
    11. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    2. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    3. Soria, Rafael & Lucena, André F.P. & Tomaschek, Jan & Fichter, Tobias & Haasz, Thomas & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro & Fahl, Ulrich & Kern, Jürgen, 2016. "Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach," Energy, Elsevier, vol. 116(P1), pages 265-280.
    4. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    5. Groissböck, Markus & Pickl, Matthias J., 2018. "Fuel-price reform to achieve climate and energy policy goals in Saudi Arabia: A multiple-scenario analysis," Utilities Policy, Elsevier, vol. 50(C), pages 1-12.
    6. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Groissböck, Markus & Pickl, Matthias J., 2016. "An analysis of the power market in Saudi Arabia: Retrospective cost and environmental optimization," Applied Energy, Elsevier, vol. 165(C), pages 548-558.
    9. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    12. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    13. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    14. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    15. Agostini, Claudio A. & Guzmán, Andrés M. & Nasirov, Shahriyar & Silva, Carlos, 2019. "A surplus based framework for cross-border electricity trade in South America," Energy Policy, Elsevier, vol. 128(C), pages 673-684.
    16. Lucena, André F.P. & Clarke, Leon & Schaeffer, Roberto & Szklo, Alexandre & Rochedo, Pedro R.R. & Nogueira, Larissa P.P. & Daenzer, Kathryn & Gurgel, Angelo & Kitous, Alban & Kober, Tom, 2016. "Climate policy scenarios in Brazil: A multi-model comparison for energy," Energy Economics, Elsevier, vol. 56(C), pages 564-574.
    17. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    18. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
    19. Keller, Victor & English, Jeffrey & Fernandez, Julian & Wade, Cameron & Fowler, McKenzie & Scholtysik, Sven & Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Wild, Peter & Crawford, Curran , 2019. "Electrification of road transportation with utility controlled charging: A case study for British Columbia with a 93% renewable electricity target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Welsch, Manuel & Bazilian, Morgan & Howells, Mark & Divan, Deepak & Elzinga, David & Strbac, Goran & Jones, Lawrence & Keane, Andrew & Gielen, Dolf & Balijepalli, V.S.K. Murthy & Brew-Hammond, Abeeku , 2013. "Smart and Just Grids for sub-Saharan Africa: Exploring options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 336-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:115:y:2018:i:c:p:470-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.