IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v28y2000i1p9-18.html
   My bibliography  Save this item

Electric-drive vehicles for peak power in Japan

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
  2. Williams, Brett D & Kurani, Kenneth S, 2007. "Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities," Institute of Transportation Studies, Working Paper Series qt34x5p0kn, Institute of Transportation Studies, UC Davis.
  3. Williams, Brett D, 2010. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management," University of California Transportation Center, Working Papers qt15f9495j, University of California Transportation Center.
  4. Shamsunnahar Khanam & Yuzuru Miyata, 2012. "New Industrial Structure Coping With The Economic Impacts Of Shifting Production To Battery-Based Electric Vehicles In Toyohashi City In Japan-A Cge Modeling Approach-," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(3), pages 105-125, December.
  5. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2020. "Economic analysis of batteries: Impact on security of electricity supply and renewable energy expansion in Germany," Applied Energy, Elsevier, vol. 275(C).
  6. Yongma Moon & Joongseok Ahn & Wonchang Hur & Wooje Kim & Kwangsup Shin, 2021. "Economic Valuation of Vehicle-Grid Integration (VGI) in a Demand Response Application from Each Stakeholder’s Perspective," Energies, MDPI, vol. 14(3), pages 1-15, February.
  7. Ryunosuke Kikuchi, 2003. "CO2 Recovery and Reuse in the Energy Sector, Energy Resource Development and Others: Economic and Technical Evaluation of Large-Scale Co2 Recycling," Energy & Environment, , vol. 14(4), pages 383-395, July.
  8. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
  9. Calnan, P. & Deane, J.P. & Ó Gallachóir, B.P., 2013. "Modelling the impact of EVs on electricity generation, costs and CO2 emissions," Energy Policy, Elsevier, vol. 61(C), pages 230-237.
  10. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt16k010cq, Institute of Transportation Studies, UC Davis.
  11. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
  12. Li, Zhe & Ouyang, Minggao, 2011. "The pricing of charging for electric vehicles in China—Dilemma and solution," Energy, Elsevier, vol. 36(9), pages 5765-5778.
  13. Han, Sekyung & Han, Soohee & Aki, Hirohisa, 2014. "A practical battery wear model for electric vehicle charging applications," Applied Energy, Elsevier, vol. 113(C), pages 1100-1108.
  14. Esteban, Miguel & Zhang, Qi & Utama, Agya & Tezuka, Tetsuo & Ishihara, Keiichi N., 2010. "Methodology to estimate the output of a dual solar-wind renewable energy system in Japan," Energy Policy, Elsevier, vol. 38(12), pages 7793-7802, December.
  15. Muhammad Aziz & Takuya Oda & Takashi Mitani & Yoko Watanabe & Takao Kashiwagi, 2015. "Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting," Energies, MDPI, vol. 8(5), pages 1-19, April.
  16. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
  17. Zhang, Qi & Tezuka, Tetsuo & Ishihara, Keiichi N. & Mclellan, Benjamin C., 2012. "Integration of PV power into future low-carbon smart electricity systems with EV and HP in Kansai Area, Japan," Renewable Energy, Elsevier, vol. 44(C), pages 99-108.
  18. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
  19. Green II, Robert C. & Wang, Lingfeng & Alam, Mansoor, 2011. "The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 544-553, January.
  20. Božič, Dušan & Pantoš, Miloš, 2015. "Impact of electric-drive vehicles on power system reliability," Energy, Elsevier, vol. 83(C), pages 511-520.
  21. Liu, Hui & Huang, Kai & Wang, Ni & Qi, Junjian & Wu, Qiuwei & Ma, Shicong & Li, Canbing, 2019. "Optimal dispatch for participation of electric vehicles in frequency regulation based on area control error and area regulation requirement," Applied Energy, Elsevier, vol. 240(C), pages 46-55.
  22. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
  23. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2016. "Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis," Applied Energy, Elsevier, vol. 170(C), pages 161-175.
  24. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
  25. Juul, Nina, 2012. "Battery prices and capacity sensitivity: Electric drive vehicles," Energy, Elsevier, vol. 47(1), pages 403-410.
  26. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt4kv151dp, Institute of Transportation Studies, UC Davis.
  27. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
  28. Juul, Nina & Meibom, Peter, 2011. "Optimal configuration of an integrated power and transport system," Energy, Elsevier, vol. 36(5), pages 3523-3530.
  29. Sekyung Han & Soohee Han, 2013. "Economic Feasibility of V2G Frequency Regulation in Consideration of Battery Wear," Energies, MDPI, vol. 6(2), pages 1-18, February.
  30. Zhao, Yang & Tatari, Omer, 2015. "A hybrid life cycle assessment of the vehicle-to-grid application in light duty commercial fleet," Energy, Elsevier, vol. 93(P2), pages 1277-1286.
  31. Dongqi Liu & Yaonan Wang & Yongpeng Shen, 2016. "Electric Vehicle Charging and Discharging Coordination on Distribution Network Using Multi-Objective Particle Swarm Optimization and Fuzzy Decision Making," Energies, MDPI, vol. 9(3), pages 1-17, March.
  32. Drude, Lukas & Pereira Junior, Luiz Carlos & Rüther, Ricardo, 2014. "Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment," Renewable Energy, Elsevier, vol. 68(C), pages 443-451.
  33. repec:hrs:journl::y:2012:v:4:i:3:p:105-125 is not listed on IDEAS
  34. Wei Gu & Haojun Yu & Wei Liu & Junpeng Zhu & Xiaohui Xu, 2013. "Demand Response and Economic Dispatch of Power Systems Considering Large-Scale Plug-in Hybrid Electric Vehicles/Electric Vehicles (PHEVs/EVs): A Review," Energies, MDPI, vol. 6(9), pages 1-24, August.
  35. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
  36. Zhong, Jin & He, Lina & Li, Canbing & Cao, Yijia & Wang, Jianhui & Fang, Baling & Zeng, Long & Xiao, Guoxuan, 2014. "Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation," Applied Energy, Elsevier, vol. 123(C), pages 253-262.
  37. Juul, Nina & Meibom, Peter, 2012. "Road transport and power system scenarios for Northern Europe in 2030," Applied Energy, Elsevier, vol. 92(C), pages 573-582.
  38. Peng, Minghong & Liu, Lian & Jiang, Chuanwen, 2012. "A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (PHEVs)-penetrated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1508-1515.
  39. Sadineni, Suresh B. & Boehm, Robert F., 2012. "Measurements and simulations for peak electrical load reduction in cooling dominated climate," Energy, Elsevier, vol. 37(1), pages 689-697.
  40. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.