IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i1p56-67.html
   My bibliography  Save this article

Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA

Author

Listed:
  • Dougherty, William
  • Kartha, Sivan
  • Rajan, Chella
  • Lazarus, Michael
  • Bailie, Alison
  • Runkle, Benjamin
  • Fencl, Amanda

Abstract

Hydrogen is an energy carrier able to be produced from domestic, zero-carbon sources and consumed by zero-pollution devices. A transition to a hydrogen-based economy could therefore potentially respond to climate, air quality, and energy security concerns. In a hydrogen economy, both mobile and stationary energy needs could be met through the reaction of hydrogen (H2) with oxygen (O2). This study applies a full fuel cycle approach to quantify the energy, greenhouse gas emissions (GHGs), and cost implications associated with a large transition to hydrogen in the United States. It explores a national and four metropolitan area transitions in two contrasting policy contexts: a "business-as-usual" (BAU) context with continued reliance on fossil fuels, and a "GHG-constrained" context with policies aimed at reducing greenhouse gas emissions. A transition in either policy context faces serious challenges, foremost among them from the highly inertial investments over the past century or so in technology and infrastructure based on petroleum, natural gas, and coal. A hydrogen transition in the USA could contribute to an effective response to climate change by helping to achieve deep reductions in GHG emissions by mid-century across all sectors of the economy; however, these reductions depend on the use of hydrogen to exploit clean, zero-carbon energy supply options.

Suggested Citation

  • Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:1:p:56-67
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00341-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farrell, Alexander E. & Keith, David W. & Corbett, James J., 2003. "A strategy for introducing hydrogen into transportation," Energy Policy, Elsevier, vol. 31(13), pages 1357-1367, October.
    2. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
    3. Hammerschlag, Roel & Mazza, Patrick, 2005. "Questioning hydrogen," Energy Policy, Elsevier, vol. 33(16), pages 2039-2043, November.
    4. Kempton, Willett & Kubo, Toru, 2000. "Electric-drive vehicles for peak power in Japan," Energy Policy, Elsevier, vol. 28(1), pages 9-18, January.
    5. Rose, Lars, 2007. "Thermec 2006," Energy Policy, Elsevier, vol. 35(6), pages 3541-3545, June.
    6. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
    7. McDowall, William & Eames, Malcolm, 2006. "Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature," Energy Policy, Elsevier, vol. 34(11), pages 1236-1250, July.
    8. Lipman, Tim & Kammen, Daniel & Ogden, Joan & Sperling, Dan, 2004. "An Integrated Hydrogen Vision for California," Institute of Transportation Studies, Working Paper Series qt9hx260wp, Institute of Transportation Studies, UC Davis.
    9. Korpås, Magnus & Greiner, Christopher J., 2008. "Opportunities for hydrogen production in connection with wind power in weak grids," Renewable Energy, Elsevier, vol. 33(6), pages 1199-1208.
    10. Solomon, Barry D. & Banerjee, Abhijit, 2006. "A global survey of hydrogen energy research, development and policy," Energy Policy, Elsevier, vol. 34(7), pages 781-792, May.
    11. Solomon, Barry D. & Banerjee, Abhijit, 2006. "Erratum to "A global survey of hydrogen energy research, development and policy": [Energy Policy 34 (2006) 781-792]," Energy Policy, Elsevier, vol. 34(11), pages 1318-1208, July.
    12. Ramesohl, Stephan & Merten, Frank, 2006. "Energy system aspects of hydrogen as an alternative fuel in transport," Energy Policy, Elsevier, vol. 34(11), pages 1251-1259, July.
    13. Lipman, Timothy E., 2004. "What Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy," Institute of Transportation Studies, Working Paper Series qt5w82s62b, Institute of Transportation Studies, UC Davis.
    14. Rose, Lars, 2007. "Surface technologies 2006--Alternative energies and policy options," Energy Policy, Elsevier, vol. 35(12), pages 6106-6111, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alazemi, Jasem & Andrews, John, 2015. "Automotive hydrogen fuelling stations: An international review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 483-499.
    2. Wee, Jung-Ho, 2010. "Contribution of fuel cell systems to CO2 emission reduction in their application fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 735-744, February.
    3. Caetano, Marco Antonio Leonel & Gherardi, Douglas Francisco Marcolino & Ribeiro, Gustavo de Paula & Yoneyama, Takashi, 2009. "Reduction of CO2 emission by optimally tracking a pre-defined target," Ecological Modelling, Elsevier, vol. 220(19), pages 2536-2542.
    4. Imran Khan, Muhammad, 2017. "Policy options for the sustainable development of natural gas as transportation fuel," Energy Policy, Elsevier, vol. 110(C), pages 126-136.
    5. Maniatopoulos, Paul & Andrews, John & Shabani, Bahman, 2015. "Towards a sustainable strategy for road transportation in Australia: The potential contribution of hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 24-34.
    6. Köhler, Jonathan & Whitmarsh, Lorraine & Nykvist, Björn & Schilperoord, Michel & Bergman, Noam & Haxeltine, Alex, 2009. "A transitions model for sustainable mobility," Ecological Economics, Elsevier, vol. 68(12), pages 2985-2995, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nocera, Silvio & Cavallaro, Federico, 2016. "The competitiveness of alternative transport fuels for CO2 emissions," Transport Policy, Elsevier, vol. 50(C), pages 1-14.
    2. van Ruijven, Bas & Hari, Lakshmikanth & van Vuuren, Detlef P. & de Vries, Bert, 2008. "The potential role of hydrogen energy in India and Western Europe," Energy Policy, Elsevier, vol. 36(5), pages 1649-1665, May.
    3. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    4. Huijts, N.M.A. & De Groot, J.I.M. & Molin, E.J.E. & van Wee, B., 2013. "Intention to act towards a local hydrogen refueling facility: Moral considerations versus self-interest," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 63-74.
    5. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    6. Singh, Sonal & Jain, Shikha & PS, Venkateswaran & Tiwari, Avanish K. & Nouni, Mansa R. & Pandey, Jitendra K. & Goel, Sanket, 2015. "Hydrogen: A sustainable fuel for future of the transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 623-633.
    7. Sovacool, Benjamin K. & Brossmann, Brent, 2010. "Symbolic convergence and the hydrogen economy," Energy Policy, Elsevier, vol. 38(4), pages 1999-2012, April.
    8. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    9. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    10. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    11. Chang, Le & Li, Zheng & Gao, Dan & Huang, He & Ni, Weidou, 2007. "Pathways for hydrogen infrastructure development in China: Integrated assessment for vehicle fuels and a case study of Beijing," Energy, Elsevier, vol. 32(11), pages 2023-2037.
    12. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    13. Yongxi Huang & Yueyue Fan & Nils Johnson, 2010. "Multistage System Planning for Hydrogen Production and Distribution," Networks and Spatial Economics, Springer, vol. 10(4), pages 455-472, December.
    14. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    16. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    17. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    18. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Li, Guozhen, 2023. "The Hydrogen Fuel Pathway for Air Transportation," Institute of Transportation Studies, Working Paper Series qt3sh5x1vk, Institute of Transportation Studies, UC Davis.
    20. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.

    More about this item

    Keywords

    Hydrogen Greenhouse gases Energy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:1:p:56-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.