IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp443-451.html
   My bibliography  Save this article

Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment

Author

Listed:
  • Drude, Lukas
  • Pereira Junior, Luiz Carlos
  • Rüther, Ricardo

Abstract

Vehicle-to-grid (V2G) energy transfer in a smart grid environment opens a new revenue opportunity for electric-drive vehicles (EVs), and might reduce grid operation costs in demand-constrained urban feeders where peak-electricity prices are high. This paper analyses the peak demand energy market for V2G in the urban region of Florianópolis, Brazil. The article describes known V2G-concepts and introduces two different dispatch strategies developed for the Brazilian energy market in the light of new tariff regulations, which are expected to go into effect starting in 2014. It turns out that electric-drive vehicles may be used as a grid-stabilisation strategy, but the announced tariff regulations may lead to a destabilisation if there are too many cars offering their internal storage for V2G grid support. Adequate energy policy strategies must be introduced to avoid the conflicting interests that might stem from the different perspectives of grid operators and EV owners. In contrast to previous analyses, this research assumes the battery degradation as a function of depth of discharge (DOD), which is known for a specific battery.

Suggested Citation

  • Drude, Lukas & Pereira Junior, Luiz Carlos & Rüther, Ricardo, 2014. "Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment," Renewable Energy, Elsevier, vol. 68(C), pages 443-451.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:443-451
    DOI: 10.1016/j.renene.2014.01.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.01.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    3. Gass, V. & Schmidt, J. & Schmid, E., 2014. "Analysis of alternative policy instruments to promote electric vehicles in Austria," Renewable Energy, Elsevier, vol. 61(C), pages 96-101.
    4. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    5. Perujo, Adolfo & Ciuffo, Biagio, 2010. "The introduction of electric vehicles in the private fleet: Potential impact on the electric supply system and on the environment. A case study for the Province of Milan, Italy," Energy Policy, Elsevier, vol. 38(8), pages 4549-4561, August.
    6. Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt0qp6s4mb, Institute of Transportation Studies, UC Davis.
    7. Camus, C. & Farias, T. & Esteves, J., 2011. "Potential impacts assessment of plug-in electric vehicles on the Portuguese energy market," Energy Policy, Elsevier, vol. 39(10), pages 5883-5897, October.
    8. Sovacool, Benjamin K. & Hirsh, Richard F., 2009. "Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition," Energy Policy, Elsevier, vol. 37(3), pages 1095-1103, March.
    9. Dallinger, David & Krampe, Daniel & Wietschel, Martin, 2010. "Vehicle-to-grid regulation based on a dynamic simulation of mobility behavior," Working Papers "Sustainability and Innovation" S4/2010, Fraunhofer Institute for Systems and Innovation Research (ISI).
    10. Kempton, Willett & Kubo, Toru, 2000. "Electric-drive vehicles for peak power in Japan," Energy Policy, Elsevier, vol. 28(1), pages 9-18, January.
    11. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    12. Mullan, Jonathan & Harries, David & Bräunl, Thomas & Whitely, Stephen, 2011. "Modelling the impacts of electric vehicle recharging on the Western Australian electricity supply system," Energy Policy, Elsevier, vol. 39(7), pages 4349-4359, July.
    13. Zhang, Qi & Tezuka, Tetsuo & Ishihara, Keiichi N. & Mclellan, Benjamin C., 2012. "Integration of PV power into future low-carbon smart electricity systems with EV and HP in Kansai Area, Japan," Renewable Energy, Elsevier, vol. 44(C), pages 99-108.
    14. Saitoh, Takeo S. & Yamada, Noboru & Ando, Daigo & Kurata, Kazuyoshi, 2005. "A grand design of future electric vehicle to reduce urban warming and CO2 emissions in urban area," Renewable Energy, Elsevier, vol. 30(12), pages 1847-1860.
    15. Ford, Andrew, 1994. "Electric vehicles and the electric utility company," Energy Policy, Elsevier, vol. 22(7), pages 555-570, July.
    16. Yan, Xinxiang & Patterson, Dean, 2001. "Novel power management for high performance and cost reduction in an electric vehicle," Renewable Energy, Elsevier, vol. 22(1), pages 177-183.
    17. Kempton, Willett & Tomic, Jasna & Letendre, Steven & Brooks, Alec & Lipman, Timothy, 2001. "Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California," Institute of Transportation Studies, Working Paper Series qt5cc9g0jp, Institute of Transportation Studies, UC Davis.
    18. Ekman, Claus Krog, 2011. "On the synergy between large electric vehicle fleet and high wind penetration – An analysis of the Danish case," Renewable Energy, Elsevier, vol. 36(2), pages 546-553.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    2. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    3. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    4. Ruben Garruto & Michela Longo & Wahiba Yaïci & Federica Foiadelli, 2020. "Connecting Parking Facilities to the Electric Grid: A Vehicle-to-Grid Feasibility Study in a Railway Station’s Car Park," Energies, MDPI, vol. 13(12), pages 1-23, June.
    5. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "A Feasibility Test on Adopting Electric Vehicles to Serve as Taxis in Daejeon Metropolitan City of South Korea," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    6. Zhao, Yang & Tatari, Omer, 2015. "A hybrid life cycle assessment of the vehicle-to-grid application in light duty commercial fleet," Energy, Elsevier, vol. 93(P2), pages 1277-1286.
    7. Thomas J.T. Van der Wardt & Amro M. Farid, 2017. "A Hybrid Dynamic System Assessment Methodology for Multi-Modal Transportation-Electrification," Energies, MDPI, vol. 10(5), pages 1-25, May.
    8. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2016. "Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis," Applied Energy, Elsevier, vol. 170(C), pages 161-175.
    9. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    10. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    11. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    12. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    13. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    14. Juul, Nina & Meibom, Peter, 2012. "Road transport and power system scenarios for Northern Europe in 2030," Applied Energy, Elsevier, vol. 92(C), pages 573-582.
    15. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    16. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    17. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    18. Lefeng, Shi & Qian, Zhang & Yongjian, Pu, 2013. "The reserve trading model considering V2G Reverse," Energy, Elsevier, vol. 59(C), pages 50-55.
    19. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    20. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.

    More about this item

    Keywords

    Photovoltaics; Vehicle-to-grid (V2G); Electric vehicles;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:443-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.