My bibliography
Save this item
Mixture cure models in credit scoring: If and when borrowers default
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Qi & He, Haijin & Lu, Bin & Song, Xinyuan, 2022. "Mixture additive hazards cure model with latent variables: Application to corporate default data," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Alexandre, Michel & Antônio Silva Brito, Giovani & Cotrim Martins, Theo, 2017. "Default contagion among credit modalities: evidence from Brazilian data," MPRA Paper 76859, University Library of Munich, Germany.
- Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
- Bravo, Cristián & Maldonado, Sebastián & Weber, Richard, 2013. "Granting and managing loans for micro-entrepreneurs: New developments and practical experiences," European Journal of Operational Research, Elsevier, vol. 227(2), pages 358-366.
- Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
- Richard Chamboko, 2024. "Digital financial services adoption: a retrospective time-to-event analysis approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-27, December.
- Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
- Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
- Adnan Dželihodžić & Dženana Đonko & Jasmin Kevrić, 2018. "Improved Credit Scoring Model Based on Bagging Neural Network," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1725-1741, November.
- Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
- Medina-Olivares, Victor & Lindgren, Finn & Calabrese, Raffaella & Crook, Jonathan, 2023. "Joint models of multivariate longitudinal outcomes and discrete survival data with INLA: An application to credit repayment behaviour," European Journal of Operational Research, Elsevier, vol. 310(2), pages 860-873.
- Lützenkirchen, Kristina & Rösch, Daniel & Scheule, Harald, 2014. "Asset portfolio securitizations and cyclicality of regulatory capital," European Journal of Operational Research, Elsevier, vol. 237(1), pages 289-302.
- Bhattacharya, Arnab & Wilson, Simon P. & Soyer, Refik, 2019. "A Bayesian approach to modeling mortgage default and prepayment," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1112-1124.
- Luong, Thi Mai & Scheule, Harald, 2022. "Benchmarking forecast approaches for mortgage credit risk for forward periods," European Journal of Operational Research, Elsevier, vol. 299(2), pages 750-767.
- Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
- Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
- Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
- Mariusz Górajski & Dobromił Serwa & Zuzanna Wośko, 2019.
"Measuring expected time to default under stress conditions for corporate loans,"
Empirical Economics, Springer, vol. 57(1), pages 31-52, July.
- Mariusz Górajski & Dobromił Serwa & Zuzanna Wośko, 2016. "Measuring expected time to default under stress conditions for corporate loans," NBP Working Papers 237, Narodowy Bank Polski.
- Mauro Ribeiro de Oliveira & Fernando Moreira & Francisco Louzada, 2017. "The zero-inflated promotion cure rate model applied to financial data on time-to-default," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1395950-139, January.
- Michal Rychnovský, 2018. "Survival Analysis As A Tool For Better Probability Of Default Prediction," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2018(1), pages 34-46.
- Richard Chamboko & Jorge Miguel Bravo, 2020. "A Multi-State Approach to Modelling Intermediate Events and Multiple Mortgage Loan Outcomes," Risks, MDPI, vol. 8(2), pages 1-29, June.
- Weidong Guo & Zach Zhizhong Zhou, 2022. "A comparative study of combining tree‐based feature selection methods and classifiers in personal loan default prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1248-1313, September.
- Calabrese, Raffaella & Crook, Jonathan, 2020. "Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients," European Journal of Operational Research, Elsevier, vol. 287(2), pages 749-761.
- Peizhi Li & Yingwei Peng & Ping Jiang & Qingli Dong, 2020. "A support vector machine based semiparametric mixture cure model," Computational Statistics, Springer, vol. 35(3), pages 931-945, September.
- Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022.
"A hierarchical mixture cure model with unobserved heterogeneity for credit risk,"
Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
- Lore Dirick & Gerda Claeskens & Andrey Vasnev & Bart Baesens, 2020. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Working Papers of Department of Decision Sciences and Information Management, Leuven 665250, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Perko, Igor, 2017. "Behaviour-based short-term invoice probability of default evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1045-1054.
- Wolter, Marcus & Rösch, Daniel, 2014. "Cure events in default prediction," European Journal of Operational Research, Elsevier, vol. 238(3), pages 846-857.
- Guotai Chi & Zhipeng Zhang, 2017. "Multi Criteria Credit Rating Model for Small Enterprise Using a Nonparametric Method," Sustainability, MDPI, vol. 9(10), pages 1-23, October.
- Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Luz López-Palacios, 2015. "Determinants of Default in P2P Lending," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
- Thi Mai Luong, 2020. "Selection Effects of Lender and Borrower Choices on Risk Measurement, Management and Prudential Regulation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2020, January-A.
- Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.
- Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
- Janette Larney & James Samuel Allison & Gerrit Lodewicus Grobler & Marius Smuts, 2023. "Modelling the Time to Write-Off of Non-Performing Loans Using a Promotion Time Cure Model with Parametric Frailty," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
- Lee, Yongwoong & Rösch, Daniel & Scheule, Harald, 2016. "Accuracy of mortgage portfolio risk forecasts during financial crises," European Journal of Operational Research, Elsevier, vol. 249(2), pages 440-456.
- He, Ping & Hua, Zhongsheng & Liu, Zhixin, 2015. "A quantification method for the collection effect on consumer term loans," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 17-26.
- Vicente G. Cancho & Dipak K. Dey & Francisco Louzada, 2016. "Unified multivariate survival model with a surviving fraction: an application to a Brazilian customer churn data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 572-584, March.
- Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
- Tong, Edward N.C. & Mues, Christophe & Brown, Iain & Thomas, Lyn C., 2016. "Exposure at default models with and without the credit conversion factor," European Journal of Operational Research, Elsevier, vol. 252(3), pages 910-920.