IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v57y2015icp17-26.html
   My bibliography  Save this article

A quantification method for the collection effect on consumer term loans

Author

Listed:
  • He, Ping
  • Hua, Zhongsheng
  • Liu, Zhixin

Abstract

Modeling state transitions of loan accounts as Markov transition matrixes, we propose a method for detecting the significance and quantifying the magnitude of collection effects on consumer term loan accounts. Quantification of the collection effect provides a theoretical basis for making optimal collection decisions with respect to loan accounts. A parameterization process is presented to reduce the number of parameters required to estimate. The quantification process consists of two steps. First, a Chi-square test detects whether the transition probability distributions with and without collection differ significantly. Second, a regression and a t-test are used to assess the magnitude of the collection effect. Application of this method to quantify collection effects in a Chinese automobile loan financing company shows that the method is able to recognize the magnitude and significance of collection effects. This paper further sets forth suggestions on how to design an experiment for necessary data collection.

Suggested Citation

  • He, Ping & Hua, Zhongsheng & Liu, Zhixin, 2015. "A quantification method for the collection effect on consumer term loans," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 17-26.
  • Handle: RePEc:eee:jbfina:v:57:y:2015:i:c:p:17-26
    DOI: 10.1016/j.jbankfin.2015.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426615000849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2015.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takada, Hideyuki & Sumita, Ushio, 2011. "Credit risk model with contagious default dependencies affected by macro-economic condition," European Journal of Operational Research, Elsevier, vol. 214(2), pages 365-379, October.
    2. Malik, Madhur & Thomas, Lyn C., 2012. "Transition matrix models of consumer credit ratings," International Journal of Forecasting, Elsevier, vol. 28(1), pages 261-272.
    3. Morton Mitchner & Raymond P. Peterson, 1957. "An Operations-Research Study of the Collection of Defaulted Loans," Operations Research, INFORMS, vol. 5(4), pages 522-545, August.
    4. So, Meko M.C. & Thomas, Lyn C., 2011. "Modelling the profitability of credit cards by Markov decision processes," European Journal of Operational Research, Elsevier, vol. 212(1), pages 123-130, July.
    5. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    6. Eric Rosenberg & Alan Gleit, 1994. "Quantitative Methods in Credit Management: A Survey," Operations Research, INFORMS, vol. 42(4), pages 589-613, August.
    7. L. Douglas Smith & Canser Bilir & Vega W. Huang & Kuo-yao Hung & Mark Kaplan, 2005. "Citibank Models Credit Risk on Hybrid Mortgage Loans in Taiwan," Interfaces, INFORMS, vol. 35(3), pages 215-229, June.
    8. Thomas, Lyn C., 2009. "Modelling the credit risk for portfolios of consumer loans: Analogies with corporate loan models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2525-2534.
    9. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    10. Robert B. Avery & Paul S. Calem & Glenn B. Canner, 2004. "Consumer credit scoring: do situational circumstances matter?," BIS Working Papers 146, Bank for International Settlements.
    11. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    12. Margaret S. Trench & Shane P. Pederson & Edward T. Lau & Lizhi Ma & Hui Wang & Suresh K. Nair, 2003. "Managing Credit Lines and Prices for Bank One Credit Cards," Interfaces, INFORMS, vol. 33(5), pages 4-21, October.
    13. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    14. Betancourt, Luis, 1999. "Using Markov Chains to Estimate Losses from a Portfolio of Mortgages," Review of Quantitative Finance and Accounting, Springer, vol. 12(3), pages 303-317, May.
    15. Lawrence, Edward C. & Smith, L. Douglas & Rhoades, Malcolm, 1992. "An analysis of default risk in mobile home credit," Journal of Banking & Finance, Elsevier, vol. 16(2), pages 299-312, April.
    16. Avery, Robert B. & Calem, Paul S. & Canner, Glenn B., 2004. "Consumer credit scoring: Do situational circumstances matter?," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 835-856, April.
    17. Smith, L. Douglas & Lawrence, Edward C., 1995. "Forecasting losses on a liquidating long-term loan portfolio," Journal of Banking & Finance, Elsevier, vol. 19(6), pages 959-985, September.
    18. L. Smith & Baiqiang Jin, 2007. "Modeling exposure to losses on automobile leases," Review of Quantitative Finance and Accounting, Springer, vol. 29(3), pages 241-266, October.
    19. Leon H. Liebman, 1972. "A Markov Decision Model for Selecting Optimal Credit Control Policies," Management Science, INFORMS, vol. 18(10), pages 519-525, June.
    20. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    21. Scott D. Grimshaw & William P. Alexander, 2011. "Markov chain models for delinquency: Transition matrix estimation and forecasting," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(3), pages 267-279, May.
    22. del Angel, Gabriela F. & Diez-Canedo, Javier Marquez & Gorbea, Estela Patino, 1998. "A discrete Markov chain model for valuing loan portfolios. The case of Mexican loan sales," Journal of Banking & Finance, Elsevier, vol. 22(10-11), pages 1457-1480, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhixin Liu & Ping He & Bo Chen, 2019. "A Markov decision model for consumer term-loan collections," Review of Quantitative Finance and Accounting, Springer, vol. 52(4), pages 1043-1064, May.
    2. Jiří Witzany & Anastasiia Kozina, 2022. "Recovery process optimization using survival regression," Operational Research, Springer, vol. 22(5), pages 5269-5296, November.
    3. Chen, Shou & Jiang, Xiangqian & He, Hongbo & Zhou, Xi, 2020. "A pricing model with dynamic repayment flows for guaranteed consumer loans," Economic Modelling, Elsevier, vol. 91(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhixin Liu & Ping He & Bo Chen, 2019. "A Markov decision model for consumer term-loan collections," Review of Quantitative Finance and Accounting, Springer, vol. 52(4), pages 1043-1064, May.
    2. Naveed Chehrazi & Peter W. Glynn & Thomas A. Weber, 2019. "Dynamic Credit-Collections Optimization," Management Science, INFORMS, vol. 67(6), pages 2737-2769, June.
    3. K Rajaratnam & P Beling & G Overstreet, 2010. "Scoring decisions in the context of economic uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 421-429, March.
    4. Jonathan K. Budd & Peter G. Taylor, 2015. "Calculating optimal limits for transacting credit card customers," Papers 1506.05376, arXiv.org, revised Aug 2015.
    5. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    6. Fernando A. F. Ferreira & Ieva Meidutė-Kavaliauskienė & Edmundas K. Zavadskas & Marjan S. Jalali & Sandra M. J. Catarino, 2019. "A Judgment-Based Risk Assessment Framework for Consumer Loans," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 7-33, January.
    7. Dawn Burton, 2012. "Credit Scoring, Risk, and Consumer Lendingscapes in Emerging Markets," Environment and Planning A, , vol. 44(1), pages 111-124, January.
    8. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    9. Richard Chamboko & Jorge Miguel Bravo, 2020. "A Multi-State Approach to Modelling Intermediate Events and Multiple Mortgage Loan Outcomes," Risks, MDPI, vol. 8(2), pages 1-29, June.
    10. Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.
    11. Arno Botha & Conrad Beyers & Pieter de Villiers, 2020. "The loss optimisation of loan recovery decision times using forecast cash flows," Papers 2010.05601, arXiv.org.
    12. Naveed Chehrazi & Thomas A. Weber, 2015. "Dynamic Valuation of Delinquent Credit-Card Accounts," Management Science, INFORMS, vol. 61(12), pages 3077-3096, December.
    13. Robert Till & David Hand, 2003. "Behavioural models of credit card usage," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1201-1220.
    14. L. Smith & Baiqiang Jin, 2007. "Modeling exposure to losses on automobile leases," Review of Quantitative Finance and Accounting, Springer, vol. 29(3), pages 241-266, October.
    15. Singh, Shweta & Murthi, B.P.S. & Steffes, Erin, 2013. "Developing a measure of risk adjusted revenue (RAR) in credit cards market: Implications for customer relationship management," European Journal of Operational Research, Elsevier, vol. 224(2), pages 425-434.
    16. Thomas Wainwright, 2011. "Elite Knowledges: Framing Risk and the Geographies of Credit," Environment and Planning A, , vol. 43(3), pages 650-665, March.
    17. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    18. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    19. Singh, Ramendra Pratap & Singh, Ramendra & Mishra, Prashant, 2021. "Does managing customer accounts receivable impact customer relationships, and sales performance? An empirical investigation," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    20. Evžen Kocenda & Martin Vojtek, 2011. "Default Predictors in Retail Credit Scoring: Evidence from Czech Banking Data," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(6), pages 80-98, November.

    More about this item

    Keywords

    Consumer term loan; Collection effect; Markov transition matrix;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:57:y:2015:i:c:p:17-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.