IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i3d10.1007_s00180-019-00931-w.html
   My bibliography  Save this article

A support vector machine based semiparametric mixture cure model

Author

Listed:
  • Peizhi Li

    (Dongbei University of Finance and Economics)

  • Yingwei Peng

    (Queen’s University
    Queen’s University)

  • Ping Jiang

    (Dongbei University of Finance and Economics)

  • Qingli Dong

    (Dalian University of Technology)

Abstract

The mixture cure model is an extension of standard survival models to analyze survival data with a cured fraction. Many developments in recent years focus on the latency part of the model to allow more flexible modeling strategies for the distribution of uncured subjects, and fewer studies focus on the incidence part to model the probability of being uncured/cured. We propose a new mixture cure model that employs the support vector machine (SVM) to model the covariate effects in the incidence part of the cure model. The new model inherits the features of the SVM to provide a flexible model to assess the effects of covariates on the incidence. Unlike the existing nonparametric approaches for the incidence part, the SVM method also allows for potentially high-dimensional covariates in the incidence part. Semiparametric models are also allowed in the latency part of the proposed model. We develop an estimation method to estimate the cure model and conduct a simulation study to show that the proposed model outperforms existing cure models, particularly in incidence estimation. An illustrative example using data from leukemia patients is given.

Suggested Citation

  • Peizhi Li & Yingwei Peng & Ping Jiang & Qingli Dong, 2020. "A support vector machine based semiparametric mixture cure model," Computational Statistics, Springer, vol. 35(3), pages 931-945, September.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-019-00931-w
    DOI: 10.1007/s00180-019-00931-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00931-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00931-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thiago G. Ramires & Niel Hens & Gauss M. Cordeiro & Edwin M. M. Ortega, 2018. "Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model," Computational Statistics, Springer, vol. 33(2), pages 709-730, June.
    2. Yingwei Peng & Keith B. G. Dear, 2000. "A Nonparametric Mixture Model for Cure Rate Estimation," Biometrics, The International Biometric Society, vol. 56(1), pages 237-243, March.
    3. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    4. Peng, Yingwei, 2003. "Fitting semiparametric cure models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 481-490, January.
    5. Mao, Meng & Wang, Jane-Ling, 2010. "Semiparametric Efficient Estimation for a Class of Generalized Proportional Odds Cure Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 302-311.
    6. Lopez-Cheda, Ana & Cao, Ricardo & Jacome, Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," LIDAM Reprints ISBA 2017001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Yuanshan Wu & Guosheng Yin, 2013. "Cure Rate Quantile Regression for Censored Data With a Survival Fraction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1517-1531, December.
    8. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    9. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Rejoinder on: Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 513-520, June.
    2. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
    2. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    3. Ana López-Cheda & M. Amalia Jácome & Ricardo Cao, 2017. "Nonparametric latency estimation for mixture cure models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 353-376, June.
    4. Philippe Lambert & Vincent Bremhorst, 2020. "Inclusion of time‐varying covariates in cure survival models with an application in fertility studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 333-354, January.
    5. Motahareh Parsa & Ingrid Van Keilegom, 2023. "Accelerated failure time vs Cox proportional hazards mixture cure models: David vs Goliath?," Statistical Papers, Springer, vol. 64(3), pages 835-855, June.
    6. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    7. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    8. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    9. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 467-495, June.
    10. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    11. Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.
    12. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    13. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    14. Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.
    15. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    16. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Rejoinder on: Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 513-520, June.
    17. Yuanshan Wu & Guosheng Yin, 2017. "Multiple imputation for cure rate quantile regression with censored data," Biometrics, The International Biometric Society, vol. 73(1), pages 94-103, March.
    18. Patilea, Valentin & Van Keilegom, Ingrid, 2017. "A general approach for cure models in survival analysis," LIDAM Discussion Papers ISBA 2017008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Naveen Narisetty & Roger Koenker, 2019. "Censored quantile regression survival models with a cure proportion," CeMMAP working papers CWP56/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Justin Chown & Cédric Heuchenne & Ingrid Van Keilegom, 2020. "The nonparametric location-scale mixture cure model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1008-1028, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-019-00931-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.