IDEAS home Printed from https://ideas.repec.org/a/taf/oaefxx/v5y2017i1p1395950.html
   My bibliography  Save this article

The zero-inflated promotion cure rate model applied to financial data on time-to-default

Author

Listed:
  • Mauro Ribeiro de Oliveira
  • Fernando Moreira
  • Francisco Louzada

Abstract

In this paper, we extend the promotion cure rate model studied in Yakovlev and Tsodikov (1996) and Chen et al. (1999) by incorporating an excess of zeros in the modeling. Despite relating covariates to the cure fraction, the current approach does not enable us to relate covariates to the fraction of zeros. The presence of excess of zeros in credit risk survival data stems from a group of loans that became defaulted shortly after the granting process. Through our proposal, all survival data available of customers is modeled with a multinomial logistic link for the three classes of banking customers: (i) individual with an event at the starting time (zero time), (ii) non-susceptible for the event, or (iii) susceptible for the event. The model parameter estimation is reached by the maximum likelihood estimation procedure and Monte Carlo simulations are carried out to assess its finite sample performance.

Suggested Citation

  • Mauro Ribeiro de Oliveira & Fernando Moreira & Francisco Louzada, 2017. "The zero-inflated promotion cure rate model applied to financial data on time-to-default," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1395950-139, January.
  • Handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1395950
    DOI: 10.1080/23322039.2017.1395950
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23322039.2017.1395950
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23322039.2017.1395950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    2. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    3. Rodrigues, Josemar & Cancho, Vicente G. & de Castro, Mrio & Louzada-Neto, Francisco, 2009. "On the unification of long-term survival models," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 753-759, March.
    4. Li, Chin-Shang & Taylor, Jeremy M. G. & Sy, Judy P., 2001. "Identifiability of cure models," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 389-395, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janette Larney & James Samuel Allison & Gerrit Lodewicus Grobler & Marius Smuts, 2023. "Modelling the Time to Write-Off of Non-Performing Loans Using a Promotion Time Cure Model with Parametric Frailty," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    2. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    3. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy, 2012. "Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1703-1713.
    4. Diego I. Gallardo & Heleno Bolfarine & Atonio Carlos Pedroso-de-Lima, 2017. "A clustering cure rate model with application to a sealant study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2949-2962, December.
    5. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    6. Vicente G. Cancho & Dipak K. Dey & Francisco Louzada, 2016. "Unified multivariate survival model with a surviving fraction: an application to a Brazilian customer churn data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 572-584, March.
    7. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    8. Alexandre, Michel & Antônio Silva Brito, Giovani & Cotrim Martins, Theo, 2017. "Default contagion among credit modalities: evidence from Brazilian data," MPRA Paper 76859, University Library of Munich, Germany.
    9. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    10. Gourieroux, Christian & Lu, Yang, 2019. "Least impulse response estimator for stress test exercises," Journal of Banking & Finance, Elsevier, vol. 103(C), pages 62-77.
    11. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    12. Suvra Pal & N. Balakrishnan, 2017. "Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data," Computational Statistics, Springer, vol. 32(2), pages 429-449, June.
    13. Carlos Rojas & Bernardo Riffo & Ernesto Guerra, 2023. "Word Retrieval After the 80s: Evidence From Specific and Multiple Words Naming Tasks," SAGE Open, , vol. 13(2), pages 21582440231, May.
    14. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    15. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    16. Sheng Luo & Ciprian M. Crainiceanu & Thomas A. Louis & Nilanjan Chatterjee, 2009. "Bayesian Inference for Smoking Cessation with a Latent Cure State," Biometrics, The International Biometric Society, vol. 65(3), pages 970-978, September.
    17. Reboul, E. & Guérin, I. & Nordman, C.J., 2021. "The gender of debt and credit: Insights from rural Tamil Nadu," World Development, Elsevier, vol. 142(C).
    18. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    19. Masserini, Lucio & Bini, Matilde & Lorenzoni, Valentina, 2024. "The effect of pricing policies on students’ use of university canteens," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    20. Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1395950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/OAEF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.