IDEAS home Printed from https://ideas.repec.org/r/eee/eecrev/v45y2001i8p1379-1398.html
   My bibliography  Save this item

Economic growth and transitions between renewable and nonrenewable energy resources

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jorge Antunes & Rangan Gupta & Zinnia Mukherjee & Peter Wanke, 2022. "Information entropy, continuous improvement, and US energy performance: a novel stochastic-entropic analysis for ideal solutions (SEA-IS)," Annals of Operations Research, Springer, vol. 313(1), pages 289-318, June.
  2. repec:eid:wpaper:12/10 is not listed on IDEAS
  3. van der Meijden, Gerard & Smulders, Sjak, 2018. "Technological Change During The Energy Transition," Macroeconomic Dynamics, Cambridge University Press, vol. 22(4), pages 805-836, June.
  4. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
  5. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
  6. Hernando Zuleta, 2008. "Energy Saving Innovations, Non-Exhaustible Sources of Energy and Long-Run: What Would Happen if we Run Out of Oil?," Revista de Economía del Rosario, Universidad del Rosario, November.
  7. Lizhan Cao & Zhongying Qi, 2017. "Theoretical Explanations for the Inverted-U Change of Historical Energy Intensity," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
  8. Tim Jackson & Peter Victor & Asjad Naqvi, 2016. "Towards a Stock-Flow Consistent Ecological Macroeconomics. WWWforEurope Working Paper No. 114," WIFO Studies, WIFO, number 58788.
  9. VARDAR, N. Baris, 2013. "Imperfect resource substitution and optimal transition to clean technologies," LIDAM Discussion Papers CORE 2013072, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  10. Hadi Sasana & Imam Ghozali, 2017. "The Impact of Fossil and Renewable Energy Consumption on the Economic Growth in Brazil, Russia, India, China and South Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 194-200.
  11. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2008. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution and Learning," IDEI Working Papers 52, Institut d'Économie Industrielle (IDEI), Toulouse.
  12. Dingbang Cang & Yiming Xu & Guiqiang Wang, 2022. "The Relationship between Economic Growth and Disaster Losses-Based on Linear and Nonlinear ARDL Model in China," Sustainability, MDPI, vol. 14(15), pages 1-11, August.
  13. Alexandra-Anca Purcel, 2020. "New insights into the environmental Kuznets curve hypothesis in developing and transition economies: a literature survey," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 585-631, October.
  14. Bruce Morley, 2010. "Environmental Policy and Economic Growth: Empirical Evidence from Europe," Department of Economics Working Papers 12/10, University of Bath, Department of Economics.
  15. Wang, Qiang & Wang, Lili & Li, Rongrong, 2023. "Could trade protectionism reshape the nexus of energy-economy-environment? Insight from different income groups," Resources Policy, Elsevier, vol. 85(PA).
  16. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
  17. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
  18. Burke, Paul J., 2010. "Income, resources, and electricity mix," Energy Economics, Elsevier, vol. 32(3), pages 616-626, May.
  19. Adrienne M. Ohler, 2015. "Factors Affecting the Rise of Renewable Energy in the U.S.: Concern over Environmental Quality or Rising Unemployment?," The Energy Journal, , vol. 36(2), pages 97-116, April.
  20. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
  21. Färnstrand Damsgaard, Erika, 2012. "Exhaustible resources, technology choice and industrialization of developing countries," Resource and Energy Economics, Elsevier, vol. 34(3), pages 271-294.
  22. AMIGUES Jean-Pierre & MOREAUX Michel & RICCI Francesco, 2006. "Overcoming the Natural Resource Constraint Through Dedicated R&D Effort with Heterogenous Labor Supply," LERNA Working Papers 06.22.215, LERNA, University of Toulouse.
  23. Y. Tsur & A. Zemel, 2007. "On the Dynamics of Knowledge-Based Economic Growth," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 101-115, October.
  24. Muntasir Murshed & Mohamed Elheddad & Rizwan Ahmed & Mohga Bassim & Ei Thuzar Than, 2022. "Foreign Direct Investments, Renewable Electricity Output, and Ecological Footprints: Do Financial Globalization Facilitate Renewable Energy Transition and Environmental Welfare in Bangladesh?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 33-78, March.
  25. Voosholz, Frauke, 2014. "The influence of different production functions on modeling resource extraction and economic growth," CAWM Discussion Papers 72, University of Münster, Münster Center for Economic Policy (MEP).
  26. Grimaud, Andre & Rouge, Luc, 2005. "Polluting non-renewable resources, innovation and growth: welfare and environmental policy," Resource and Energy Economics, Elsevier, vol. 27(2), pages 109-129, June.
  27. Leiva, Benjamin & Ramirez, Octavio A. & Schramski, John R., 2019. "A framework to consider energy transfers within growth theory," Energy, Elsevier, vol. 178(C), pages 624-630.
  28. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
  29. Ohler, Adrienne M., 2014. "Behavior of the firm under rate-of-return regulation with two capital inputs," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(1), pages 61-69.
  30. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2012. "Cycles in nonrenewable resource prices with pollution and learning-by-doing," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1448-1461.
  31. Faraz Farhidi, 2023. "Impact of fossil fuel transition and population expansion on economic growth," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2571-2609, March.
  32. Tsur, Yacov & Zemel, Amos, 2002. "Growth, Scarcity And R&D," Discussion Papers 14994, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
  33. Shahbaz, Muhammad & Rasool, Ghulam & Ahmed, Khalid & Mahalik, Mantu Kumar, 2016. "Considering the effect of biomass energy consumption on economic growth: Fresh evidence from BRICS region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1442-1450.
  34. Stern, David I., 2010. "The Role of Energy in Economic Growth," Working Papers 249380, Australian National University, Centre for Climate Economics & Policy.
  35. Zon A.H. van & David P.A., 2013. "Designing an optimal 'tech fix' path to global climate stability : directed R&D and embodied technical change in a multi‐phase framework," MERIT Working Papers 2013-041, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
  36. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
  37. Chazel, Simon & Bernard, Sophie & Benchekroun, Hassan, 2023. "Energy transition under mineral constraints and recycling: A low-carbon supply peak," Resource and Energy Economics, Elsevier, vol. 72(C).
  38. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
  39. Jeremy Nguyen & Abbas Valadkhani & Gholamreza Hajargasht, 2021. "The Choice between Renewables and Non-renewables: Evidence from Electricity Generation in 29 Countries," The Energy Journal, , vol. 42(6), pages 49-68, November.
  40. Octavio Escobar, Ulises Neri, Stephan Silvestre, 2020. "Energy policy of fossil fuel–producing countries: does global energy transition matter?," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 17(1), pages 5-30, June.
  41. Arbex, Marcelo & Perobelli, Fernando S., 2010. "Solow meets Leontief: Economic growth and energy consumption," Energy Economics, Elsevier, vol. 32(1), pages 43-53, January.
  42. Di Vita, Giuseppe, 2008. "Is the discount rate relevant in explaining the Environmental Kuznets Curve?," Journal of Policy Modeling, Elsevier, vol. 30(2), pages 191-207.
  43. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
  44. Jean-François Fagnart & Marc Germain & Benjamin Peeters, 2020. "Can the Energy Transition Be Smooth? A General Equilibrium Approach to the EROEI," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
  45. Amigues, Jean-Pierre & Moreaux, Michel & Ricci, Francesco, 2008. "Resource-augmenting R&D with heterogeneous labor supply," Environment and Development Economics, Cambridge University Press, vol. 13(6), pages 719-745, December.
  46. Burke, Paul J., 2013. "The national-level energy ladder and its carbon implications," Environment and Development Economics, Cambridge University Press, vol. 18(4), pages 484-503, August.
  47. Li, Guoxiang & Wu, Haoyue & Jiang, Jieshu & Zong, Qingqing, 2023. "Digital finance and the low-carbon energy transition (LCET) from the perspective of capital-biased technical progress," Energy Economics, Elsevier, vol. 120(C).
  48. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
  49. Di Vita, Giuseppe, 2006. "Natural resources dynamics: Exhaustible and renewable resources, and the rate of technical substitution," Resources Policy, Elsevier, vol. 31(3), pages 172-182, September.
  50. Agyeman, Stephen Duah & Lin, Boqiang, 2022. "Nonrenewable and renewable energy substitution, and low–carbon energy transition: Evidence from North African countries," Renewable Energy, Elsevier, vol. 194(C), pages 378-395.
  51. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
  52. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
  53. Maria Fröling, 2011. "Energy use, population and growth, 1800–1970," Journal of Population Economics, Springer;European Society for Population Economics, vol. 24(3), pages 1133-1163, July.
  54. Asjad Naqvi, 2015. "Modeling Growth, Distribution, and the Environment in a Stock-Flow Consistent Framework. WWWforEurope Policy Paper No. 18," WIFO Studies, WIFO, number 57883.
  55. David, Paul & Van Zon, Adriaan, 2012. "Optimal multi-phase transition paths toward a global green economy," MERIT Working Papers 2012-079, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
  56. Jeyhun I. Mikayilov & Marzio Galeotti & Fakhri J. Hasanov, 2018. "The Impact of Economic Growth on CO2 Emissions in Azerbaijan," IEFE Working Papers 102, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
  57. Jean-François Fagnart & Marc Germain, 2015. "Can the Energy Transition Be Smooth?," Working Papers 2015.04, FAERE - French Association of Environmental and Resource Economists.
  58. Kollenbach, Gilbert, 2017. "Unilateral climate Policy and the Green Paradox: Extraction Costs matter," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168245, Verein für Socialpolitik / German Economic Association.
  59. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2015. "Endogenous economic growth, EROI, and transition towards renewable energy," Working Papers 1507, Chaire Economie du climat.
  60. Benjamin Leiva & Octavio Ramirez & John R. Schramski, 2018. "A theoretical framework to consider energy transfers within growth theory," Papers 1812.05091, arXiv.org.
  61. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
  62. Levin, Mark (Левин, Марк), 2018. "Research of Economic Models of Innovations Aimed at Overcoming the Deficit of Natural Resources [Исследование Экономических Моделей Инноваций, Направленных На Преодоление Дефицита Природных Ресурсо," Working Papers 021803, Russian Presidential Academy of National Economy and Public Administration.
  63. Anelí Bongers, 2020. "The Environmental Kuznets Curve and the Energy Mix: A Structural Estimation," Energies, MDPI, vol. 13(10), pages 1-21, May.
  64. Nguyen, Manh-Hung & Nguyen-Van, Phu, 2010. "Growth and convergence in a model with renewable and non-renewable resources: existence, transitional dynamics, and empirical evidence," TSE Working Papers 10-210, Toulouse School of Economics (TSE).
  65. Andre, Francisco J. & Cerda, Emilio, 2005. "On natural resource substitution," Resources Policy, Elsevier, vol. 30(4), pages 233-246, December.
  66. Charles van Marrewijk, 2005. "Geographical Economics and the Role of Pollution on Location," Tinbergen Institute Discussion Papers 05-018/2, Tinbergen Institute.
  67. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
  68. Hassler, John & Krusell, Per & Olovsson, Conny, 2022. "Finite resources and the world economy," Journal of International Economics, Elsevier, vol. 136(C).
  69. Bergmann, Philip, 2019. "Oil price shocks and GDP growth: Do energy shares amplify causal effects?," Energy Economics, Elsevier, vol. 80(C), pages 1010-1040.
  70. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
  71. Stuermer, Martin & Schwerhoff, Gregor, 2013. "Technological change in resource extraction and endogenous growth," Bonn Econ Discussion Papers 12/2013, University of Bonn, Bonn Graduate School of Economics (BGSE).
  72. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
  73. Li, Wei & Sun, Wen & Li, Guomin & Jin, Baihui & Wu, Wen & Cui, Pengfei & Zhao, Guohao, 2018. "Transmission mechanism between energy prices and carbon emissions using geographically weighted regression," Energy Policy, Elsevier, vol. 115(C), pages 434-442.
  74. Maciej Malaczewski, 2017. "Warunki przejścia gospodarki na odnawialne źródła energii," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 1, pages 33-51.
  75. Richard Green & Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, , vol. 33(3), pages 1-22, July.
  76. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
  77. Naresh Nepal & Eric Steltzer & Alok K. Bohara & Kelly Cullen, 2018. "Public values on offshore wind farm," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 225-240, January.
  78. Wei Jin & Rick van der Ploeg & Lin Zhang, 2020. "Do We Still Need Carbon-Intensive Capital When Transitioning to a Green Economy?," CESifo Working Paper Series 8745, CESifo.
  79. Gars, Johan & Olovsson, Conny, 2019. "Fuel for economic growth?," Journal of Economic Theory, Elsevier, vol. 184(C).
  80. Anelí Bongers, 2022. "Energy mix, technological change, and the environment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(3), pages 341-364, July.
  81. Feng Wang & Ruiqi Wang, 2021. "The Mechanism of Driving Green Growth and Decreasing Energy Security Risks by Innovation in China," Sustainability, MDPI, vol. 13(9), pages 1-34, April.
  82. Fernández, Esther & Pérez, Rafaela & Ruiz, Jesús, 2012. "The environmental Kuznets curve and equilibrium indeterminacy," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1700-1717.
  83. Dong Wang & Ben White & Amin Mugera & Bei Wang, 2022. "Energy Transition and Economic Development in China: A National and Sectorial Analysis from a New Structural Economics Perspectives," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
  84. Alina HALLER, 2020. "From Classical And Neoclassical Economic Growth To Degrowth In Europe. Challenges For Public Administration," REVISTA ADMINISTRATIE SI MANAGEMENT PUBLIC, Faculty of Administration and Public Management, Academy of Economic Studies, Bucharest, Romania, vol. 2020(34), pages 150-170, June.
  85. Naqvi, Syed Ali Asjad, 2015. "Modeling Growth, Distribution, and the Environment in a Stock-Flow Consistent Framework," Ecological Economic Papers 2, WU Vienna University of Economics and Business.
  86. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.
  87. Nancy McCarthy & Heath Henderson, 2014. "The Role of Renewable Energy Laws in Expanding Energy from Non-Traditional Renewables," IDB Publications (Working Papers) 86813, Inter-American Development Bank.
  88. Bidisha Lahiri, 2017. "Dissimilar Relations Between Income and Environmental Quality for Open Economies in a Growth Model," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 104-127, January.
  89. Saten Kumar & Don J. Webber & Antonio Paradiso, 2012. "Does energy consumption affect growth?," Working Papers 2012-04, Auckland University of Technology, Department of Economics.
  90. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
  91. Adrienne M. Ohler, 2015. "Factors affecting the rise of renewable energy in the U.S.: Concern over environmental quality or rising unemployment?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  92. Silva, Susana & Soares, Isabel & Afonso, Oscar, 2013. "Economic and environmental effects under resource scarcity and substitution between renewable and non-renewable resources," Energy Policy, Elsevier, vol. 54(C), pages 113-124.
  93. Jean-Pierre Amigues & Ngo Van Long & Michel Moreaux, 2006. "Ressources naturelles, impatience et progrès technique," Revue économique, Presses de Sciences-Po, vol. 57(2), pages 185-218.
  94. Martin Stürmer & Gregor Schwerhoff, 2012. "Non-Renewable but Inexhaustible – Resources in an Endogenous Growth Model," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2012_09, Max Planck Institute for Research on Collective Goods.
  95. Amedeo Argentiero, Tarek Atalla, Simona Bigerna, Silvia Micheli, and Paolo Polinori, 2017. "Comparing Renewable Energy Policies in EU-15, U.S. and China: A Bayesian DSGE Model," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
  96. Tomoyuki Sakamoto & Shunsuke Managi, 2016. "Optimal economic growth and energy policy: analysis of nonrenewable and renewable energy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(1), pages 1-19, January.
  97. Ingmar Schumacher & Pierre-André Jouvet, 2009. "Sustainability, resource substitution in energy inputs and learning," Working Papers hal-00356044, HAL.
  98. Burcu Afyonoğlu Fazlıoğlu & Agustín Pérez-Barahona & Çağrı Sağlam, 2019. "Energy and Physical Capital: A Case of Non-classical Dynamics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1003-1022, April.
  99. Sweety Pandey & Mrutyunjaya Mishra, 2021. "Investigating Environmental Kuznets Curve: A Panel Data Analysis for India," Review of Development and Change, , vol. 26(2), pages 137-152, December.
  100. Marius Bulearca & Cristian Sima, 2015. "IDENTIFYING THE ENVIRONMENTAL ISSUES IN EXTRACTIVE INDUSTRY (International Conference “EUROPEAN PERSPECTIVE OF LABOR MARKET - INOVATION, EXPERTNESS, PERFORMANCE”)," Institute for Economic Forecasting Conference Proceedings 141102, Institute for Economic Forecasting.
  101. Hart, Rob, 2012. "The economics of natural resources: Understanding and predicting the evolution of supply and demand," Working Paper Series 2012:01, Swedish University of Agricultural Sciences, Department Economics.
  102. Gilbert Kollenbach, 2019. "Unilateral climate policy and the green paradox: Extraction costs matter," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 1036-1083, August.
  103. Ignaciuk, A. & Vohringer, F. & Ruijs, A. & van Ierland, E.C., 2006. "Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis," Energy Policy, Elsevier, vol. 34(10), pages 1127-1138, July.
  104. Spiro, Daniel, 2014. "Resource prices and planning horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 159-175.
  105. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  106. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  107. Gerlagh, Reyer & Liski, Matti, 2008. "Strategic Resource Dependence," Economic Theory and Applications Working Papers 44222, Fondazione Eni Enrico Mattei (FEEM).
  108. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2009. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution Learning," Working Papers 2009-10, University of Alberta, Department of Economics.
  109. Victor Court & Pierre-Andre Jouvet & Frédéric Lantz, 2018. "Long-Term Endogenous Economic Growth and Energy Transitions," The Energy Journal, , vol. 39(1), pages 29-58, January.
  110. Jin, Wei & van der Ploeg, Frederick & Zhang, Lin, 2024. "How clean capital slows down disinvestment of carbon-intensive capital in the low-carbon transition," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
  111. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
  112. McCarthy, Nancy & Henderson, Heath, 2014. "The Role of Renewable Energy Laws in Expanding Energy from Non-Traditional Renewables," IDB Publications (Working Papers) 6677, Inter-American Development Bank.
  113. Di Vita, Giuseppe, 2008. "Capital accumulation, interest rate, and the income-pollution pattern. A simple model," Economic Modelling, Elsevier, vol. 25(2), pages 225-235, March.
  114. Giuseppe Di Vita, 2004. "Natural Resources Dynamics: Another Look," Working Papers 2004.110, Fondazione Eni Enrico Mattei.
  115. Christoph Heinzel & Ralph Winkler, 2011. "Distorted Time Preferences and Time-to-Build in the Transition to a Low-Carbon Energy Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(2), pages 217-241, June.
  116. Oliveira, Livio Luiz Soares de & Júnior, Sabino da Silva Porto, 2004. "O desenvolvimento dustentável e a conexão dos recursos naturais com o crescimento econômico: uma aplicação para o Brasil e a região nordeste [Sustainable development and connection of natural resou," MPRA Paper 45436, University Library of Munich, Germany.
  117. Agnani, Betty & Gutierrez, Maria-Jose & Iza, Amaia, 2005. "Growth in overlapping generation economies with non-renewable resources," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 387-407, September.
  118. Mosiño, Alejandro, 2012. "Producing energy in a stochastic environment: Switching from non-renewable to renewable resources," Resource and Energy Economics, Elsevier, vol. 34(4), pages 413-430.
  119. Jean-Pierre Amigues & Ngo Van Long & Michel Moreaux, 2004. "Overcoming Natural Resource Constraints Through R&D," CIRANO Working Papers 2004s-14, CIRANO.
  120. Barrera-Santana, J. & Marrero, Gustavo A. & Ramos-Real, Francisco J., 2022. "Income, energy and the role of energy efficiency governance," Energy Economics, Elsevier, vol. 108(C).
  121. Gerlagh, Reyer & Liski, Matti, 2011. "Strategic resource dependence," Journal of Economic Theory, Elsevier, vol. 146(2), pages 699-727, March.
  122. Hart, Rob & Spiro, Daniel, 2011. "The elephant in Hotelling's room," Energy Policy, Elsevier, vol. 39(12), pages 7834-7838.
  123. Bai, Yiyi & Okullo, Samuel J., 2018. "Understanding oil scarcity through drilling activity," Energy Economics, Elsevier, vol. 69(C), pages 261-269.
  124. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
  125. Dingbang, Cang & Cang, Chen & Qing, Chen & Lili, Sui & Caiyun, Cui, 2021. "Does new energy consumption conducive to controlling fossil energy consumption and carbon emissions?-Evidence from China," Resources Policy, Elsevier, vol. 74(C).
  126. Wei Chen & Jing Chen & Yongkai Ma, 2022. "Competition vs cooperation: renewable energy investment under cap-and-trade mechanisms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-28, December.
  127. Germain, Marc, 2020. "Limits to growth and structural change," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 204-221.
  128. Liao, Hua & Peng, Ying & Wang, Fang-Zhi & Zhang, Tong, 2022. "Understanding energy use growth: The role of investment-GDP ratio," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 15-24.
  129. Eriksson, Clas, 2018. "Phasing out a polluting input in a growth model with directed technological change," Economic Modelling, Elsevier, vol. 68(C), pages 461-474.
  130. Hoel, Michael, 2020. "The rise and fall of bioenergy," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
  131. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
  132. Heinzel, Christoph & Winkler, Ralph, 2006. "Gradual versus structural technological change in the transition to a low-emission energy industry: How time-to-build and differing social and individual discount rates influence environmental and tec," Dresden Discussion Paper Series in Economics 09/06, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
  133. Francesco Ricci, 2007. "Resource Conservation and Directed R&D as Strategic Complements," Energy and Environmental Modeling 2007 24000052, EcoMod.
  134. Gregor Schwerhoff & Martin Stuermer, 2015. "Non-renewable resources, extraction technology, and endogenous growth," Working Papers 1506, Federal Reserve Bank of Dallas.
  135. Roger Adkins & Dean Paxson, 2016. "Subsidies for Renewable Energy Facilities under Uncertainty," Manchester School, University of Manchester, vol. 84(2), pages 222-250, March.
  136. Kurt Kratena, 2015. "Thematic Report: Macroeconomic Models Including Specifically Social and Environmental Aspects. WWWforEurope Deliverable No. 8," WIFO Studies, WIFO, number 58411.
  137. Meng Yan & Kai Shi, 2021. "Evidence on clean energy consumption and business cycle: A global perspective," Natural Resources Forum, Blackwell Publishing, vol. 45(3), pages 230-255, August.
  138. Cassou, Steven P. & Hamilton, Stephen F., 2004. "The transition from dirty to clean industries: optimal fiscal policy and the environmental Kuznets curve," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1050-1077, November.
  139. Orlov, Anton, 2016. "Effects of higher domestic gas prices in Russia on the European gas market: A game theoretical Hotelling model," Applied Energy, Elsevier, vol. 164(C), pages 188-199.
  140. Tapio Palokangas, 2012. "Clean versus Dirty Economic Growth," DEGIT Conference Papers c017_047, DEGIT, Dynamics, Economic Growth, and International Trade.
  141. Kijima, Masaaki & Nishide, Katsumasa & Ohyama, Atsuyuki, 2010. "Economic models for the environmental Kuznets curve: A survey," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1187-1201, July.
  142. Marc Germain, 2020. "Limits to growth and structural change," Post-Print hal-03129992, HAL.
  143. Berk, Istemi & Yetkiner, Hakan, 2014. "Energy prices and economic growth in the long run: Theory and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 228-235.
  144. Charles F. Mason & Rémi Morin Chassé, 2018. "The Transition to Renewable Energy," CESifo Working Paper Series 6889, CESifo.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.