IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00637960.html
   My bibliography  Save this paper

Learning-by-doing and the Costs of a Backstop for Energy Transition and Sustainability

Author

Listed:
  • Pierre-André Jouvet

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Ingmar Schumacher

    (X-DEP-ECO - Département d'Économie de l'École Polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris, Banque Centrale du Luxembourg)

Abstract

We assess the impact of being able to substitute an unlimited but costly energy substitute (like wind, solar) for a non-renewable resource (like oil, coal) in a model of sustainable growth. The prospects for sustainability on the optimal path depend crucially on the costs of this substitute.Furthermore, the poorer a country, measured in terms of capital stock at a given point in time, the later it should switch to the renewable substitute, and the more likely it will be unsustainable. Taking learning-by-doing in account, we find that this leads to an earlier switching time but does not guarantee sustainability.

Suggested Citation

  • Pierre-André Jouvet & Ingmar Schumacher, 2011. "Learning-by-doing and the Costs of a Backstop for Energy Transition and Sustainability," Working Papers hal-00637960, HAL.
  • Handle: RePEc:hal:wpaper:hal-00637960
    Note: View the original document on HAL open archive server: https://hal.science/hal-00637960
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00637960/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yacov Tsur & Amos Zemel, 2009. "Endogenous Discounting and Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(4), pages 507-520, December.
    2. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    3. Geoffrey Heal, 2010. "Reflections--The Economics of Renewable Energy in the United States," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 139-154, Winter.
    4. Bramoulle, Yann & Olson, Lars J., 2005. "Allocation of pollution abatement under learning by doing," Journal of Public Economics, Elsevier, vol. 89(9-10), pages 1935-1960, September.
    5. Anand, Sudhir & Sen, Amartya, 2000. "Human Development and Economic Sustainability," World Development, Elsevier, vol. 28(12), pages 2029-2049, December.
    6. Thomas Aronsson & Kenneth Backlund & Karl-Gustaf Löfgren, 1998. "Nuclear Power, Externalities and Non-Standard Pigouvian Taxes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(2), pages 177-195, March.
    7. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, November.
    8. John, A & Pecchenino, R, 1994. "An Overlapping Generations Model of Growth and the Environment," Economic Journal, Royal Economic Society, vol. 104(427), pages 1393-1410, November.
    9. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    10. repec:bla:ecorec:v:70:y:1994:i:210:p:267-77 is not listed on IDEAS
    11. Alain Le Kama & Katheline Schubert, 2004. "Growth, Environment and Uncertain Future Preferences," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(1), pages 31-53, May.
    12. Slade, Margaret E., 1982. "Trends in natural-resource commodity prices: An analysis of the time domain," Journal of Environmental Economics and Management, Elsevier, vol. 9(2), pages 122-137, June.
    13. Grimaud, Andre & Rouge, Luc, 2003. "Non-renewable resources and growth with vertical innovations: optimum, equilibrium and economic policies," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 433-453, March.
    14. Charles I. Jones, 2002. "Sources of U.S. Economic Growth in a World of Ideas," American Economic Review, American Economic Association, vol. 92(1), pages 220-239, March.
    15. Just, Richard E. & Netanyahu, Sinaia & Olson, Lars J., 2005. "Depletion of natural resources, technological uncertainty, and the adoption of technological substitutes," Resource and Energy Economics, Elsevier, vol. 27(2), pages 91-108, June.
    16. Robert M. Solow, 1974. "The Economics of Resources or the Resources of Economics," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 12, pages 257-276, Palgrave Macmillan.
    17. Franz Wirl, 1991. "(Monopolistic) resource extraction and limit pricing: The market penetration of competitively produced synfuels," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 1(2), pages 157-178, June.
    18. Grimaud, Andre & Rouge, Luc, 2005. "Polluting non-renewable resources, innovation and growth: welfare and environmental policy," Resource and Energy Economics, Elsevier, vol. 27(2), pages 109-129, June.
    19. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    20. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
    21. Gjerde, Jon & Grepperud, Sverre & Kverndokk, Snorre, 1999. "Optimal climate policy under the possibility of a catastrophe," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 289-317, August.
    22. Tsur, Yacov & Zemel, Amos, 2003. "Optimal transition to backstop substitutes for nonrenewable resources," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 551-572, February.
    23. Chang, Youngho & Yong, Jiayun, 2007. "Differing perspectives of major oil firms on future energy developments: An illustrative framework," Energy Policy, Elsevier, vol. 35(11), pages 5466-5480, November.
    24. Lee H. Endress & James A. Roumasset, 1994. "Golden Rules for Sustainable Resource Management," The Economic Record, The Economic Society of Australia, vol. 70(210), pages 267-277, September.
    25. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    26. Schumacher, Ingmar & Zou, Benteng, 2008. "Pollution perception: A challenge for intergenerational equity," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 296-309, May.
    27. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    28. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
    29. Shilpa Rao, Ilkka Keppo and Keywan Riahi, 2006. "Importance of Technological Change and Spillovers in Long-Term Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 123-140.
    30. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
    31. Partha Dasgupta, 2008. "Discounting climate change," Journal of Risk and Uncertainty, Springer, vol. 37(2), pages 141-169, December.
    32. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    33. Perez-Barahona, Agustin & Zou, Benteng, 2006. "A comparative study of energy saving technical progress in a vintage capital model," Resource and Energy Economics, Elsevier, vol. 28(2), pages 181-191, May.
    34. Rubin, Edward S & Taylor, Margaret R & Yeh, Sonia & Hounshell, David A, 2004. "Learning curves for environmental technology and their importance for climate policy analysis," Energy, Elsevier, vol. 29(9), pages 1551-1559.
    35. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    36. Olli Tahvonen, 1997. "Fossil Fuels, Stock Externalities, and Backstop Technology," Canadian Journal of Economics, Canadian Economics Association, vol. 30(4), pages 855-874, November.
    37. Yacov Tsur & Amos Zemel, 2008. "Regulating environmental threats," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(3), pages 297-310, March.
    38. Poul Schou, 2000. "Polluting Non-Renewable Resources and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(2), pages 211-227, June.
    39. Schumacher, Ingmar, 2011. "When Should We Stop Extracting Nonrenewable Resources?," Macroeconomic Dynamics, Cambridge University Press, vol. 15(4), pages 495-512, September.
    40. Stephen G. Powell & Shmuel S. Oren, 1989. "The Transition to Nondepletable Energy: Social Planning and Market Models of Capacity Expansion," Operations Research, INFORMS, vol. 37(3), pages 373-383, June.
    41. Boucekkine, Raouf & Pommeret, Aude, 2004. "Energy saving technical progress and optimal capital stock: the role of embodiment," Economic Modelling, Elsevier, vol. 21(3), pages 429-444, May.
    42. Geoffrey Heal, 1976. "The Relationship Between Price and Extraction Cost for a Resource with a Backstop Technology," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 371-378, Autumn.
    43. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    44. Richard Schmalensee & Thomas M. Stoker & Ruth A. Judson, 1998. "World Carbon Dioxide Emissions: 1950-2050," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 15-27, February.
    45. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 29-45.
    46. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    47. Richard A. Clark, 1978. "The Relationship between Price and Marginal Extraction Cost for a Resource with a Backstop Technology: Comment," Bell Journal of Economics, The RAND Corporation, vol. 9(1), pages 292-293, Spring.
    48. Donald A. Hanson, 1980. "Increasing Extraction Costs and Resource Prices: Some Further Results," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 335-342, Spring.
    49. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    50. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    51. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    52. Multilateral Investment Guarantee Agency, 2001. "Annual Report 2001," World Bank Publications - Books, The World Bank Group, number 14271.
    53. John C. V. Pezzey, 1997. "Sustainability Constraints versus "Optimality" versus Intertemporal Concern, and Axioms versus Data," Land Economics, University of Wisconsin Press, vol. 73(4), pages 448-466.
    54. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apetrei, Cristina I. & Strelkovskii, Nikita & Khabarov, Nikolay & Javalera Rincón, Valeria, 2024. "Improving the representation of smallholder farmers’ adaptive behaviour in agent-based models: Learning-by-doing and social learning," Ecological Modelling, Elsevier, vol. 489(C).
    2. Xiangdong Zhu & Zhutong Gu & Canfei He & Wei Chen, 2024. "The impact of the belt and road initiative on Chinese PV firms’ export expansion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25763-25783, October.
    3. Armon Rezai & Frederick Van Der Ploeg, 2017. "Abandoning Fossil Fuel: How Fast and How Much," Manchester School, University of Manchester, vol. 85(S2), pages 16-44, December.
    4. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    5. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Jean-François Fagnart & Marc Germain & Benjamin Peeters, 2020. "Can the Energy Transition Be Smooth? A General Equilibrium Approach to the EROEI," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    7. Ekaterina Azarova & Hannah Jun, 2021. "Investigating Determinants of International Clean Energy Investments in Emerging Markets," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    8. Jean-François Fagnart & Marc Germain, 2015. "Can the Energy Transition Be Smooth?," Working Papers 2015.04, FAERE - French Association of Environmental and Resource Economists.
    9. Charles F. Mason & Rémi Morin Chassé, 2018. "The Transition to Renewable Energy," CESifo Working Paper Series 6889, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Susana & Soares, Isabel & Afonso, Oscar, 2013. "Economic and environmental effects under resource scarcity and substitution between renewable and non-renewable resources," Energy Policy, Elsevier, vol. 54(C), pages 113-124.
    2. Berk, Istemi & Yetkiner, Hakan, 2014. "Energy prices and economic growth in the long run: Theory and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 228-235.
    3. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2012. "Cycles in nonrenewable resource prices with pollution and learning-by-doing," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1448-1461.
    4. Hart, Rob, 2012. "The economics of natural resources: Understanding and predicting the evolution of supply and demand," Working Paper Series 2012:01, Swedish University of Agricultural Sciences, Department Economics.
    5. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    6. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
    7. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    8. Hart, Rob, 2016. "Non-renewable resources in the long run," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 1-20.
    9. Burcu Afyonoğlu Fazlıoğlu & Agustín Pérez-Barahona & Çağrı Sağlam, 2019. "Energy and Physical Capital: A Case of Non-classical Dynamics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1003-1022, April.
    10. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
    11. Färnstrand Damsgaard, Erika, 2012. "Exhaustible resources, technology choice and industrialization of developing countries," Resource and Energy Economics, Elsevier, vol. 34(3), pages 271-294.
    12. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    13. VARDAR, N. Baris, 2013. "Imperfect resource substitution and optimal transition to clean technologies," LIDAM Discussion Papers CORE 2013072, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    15. Ingmar Schumacher & Pierre-André Jouvet, 2009. "Sustainability, resource substitution in energy inputs and learning," Working Papers hal-00356044, HAL.
    16. Andre, Francisco J. & Cerda, Emilio, 2005. "On natural resource substitution," Resources Policy, Elsevier, vol. 30(4), pages 233-246, December.
    17. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    18. Brock, William A. & Taylor, M. Scott, 2005. "Economic Growth and the Environment: A Review of Theory and Empirics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 28, pages 1749-1821, Elsevier.
    19. Di Vita, Giuseppe, 2006. "Natural resources dynamics: Exhaustible and renewable resources, and the rate of technical substitution," Resources Policy, Elsevier, vol. 31(3), pages 172-182, September.
    20. Gilbert Kollenbach, 2019. "Unilateral climate policy and the green paradox: Extraction costs matter," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 1036-1083, August.

    More about this item

    Keywords

    backstop technology; non-renewable resource; resource substitution; sustainability; learning-by-doing.; learning-by-doing;
    All these keywords.

    JEL classification:

    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00637960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.