My bibliography
Save this item
A mixture model for preferences data analysis
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Manisera, Marica & Zuccolotto, Paola, 2015. "Identifiability of a model for discrete frequency distributions with a multidimensional parameter space," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 302-316.
- Leonardo Grilli & Maria Iannario & Domenico Piccolo & Carla Rampichini, 2014. "Latent class CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 105-119, March.
- Donata Marasini & Piero Quatto & Enrico Ripamonti, 2017. "Inferential confidence intervals for fuzzy analysis of teaching satisfaction," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(4), pages 1513-1529, July.
- Ekhine Irurozki & Borja Calvo & Jose A. Lozano, 2018. "Sampling and Learning Mallows and Generalized Mallows Models Under the Cayley Distance," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 1-35, March.
- Gore, Madison & Joshi, Omkar & Chapagain, Binod & Poudyal, Neelam C. & Fairbanks, Sue, 2023. "Visitor satisfaction with WMAs: A case study from Oklahoma," Forest Policy and Economics, Elsevier, vol. 147(C).
- E. Nardo & R. Simone, 2019. "A model-based fuzzy analysis of questionnaires," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 187-215, June.
- Jyh-Shyang Wu & Wen-Shuenn Deng, 2017. "A nonparametric procedure for testing partially ranked data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 213-230, April.
- Maria Iannario, 2012. "Preliminary estimators for a mixture model of ordinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 163-184, October.
- Stefania Capecchi & Domenico Piccolo, 2017. "Dealing with heterogeneity in ordinal responses," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2375-2393, September.
- Maria Iannario & Anna Clara Monti, 2022. "Modelling consumer perceptions of service quality for urban public transport systems using statistical models for ordinal data," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 61-76, April.
- Donata Marasini & Piero Quatto & Enrico Ripamonti, 2016. "Intuitionistic fuzzy sets in questionnaire analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 767-790, March.
- Stefania Capecchi & Rosaria Simone, 2019. "A Proposal for a Model-Based Composite Indicator: Experience on Perceived Discrimination in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 95-110, January.
- Maria Iannario, 2010. "On the identifiability of a mixture model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 87-94.
- Ribecco, Nunziata & D'Uggento, Angela Maria & Labarile, Angela, 2022. "What influences the perception of immigration in Italian adolescents? An analysis with CUB models for rating data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Jacques, Julien & Biernacki, Christophe, 2018. "Model-based co-clustering for ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 101-115.
- M. Meleddu & M. Pulina & G. Solinas & S. Capecchi, 2019. "Mixture models for consumers' preferences in healthcare," Working Paper CRENoS 201901, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Rosaria Simone, 2021. "An accelerated EM algorithm for mixture models with uncertainty for rating data," Computational Statistics, Springer, vol. 36(1), pages 691-714, March.
- Roberto Colombi & Sabrina Giordano & Gerhard Tutz, 2021. "A Rating Scale Mixture Model to Account for the Tendency to Middle and Extreme Categories," Journal of Educational and Behavioral Statistics, , vol. 46(6), pages 682-716, December.
- Gennaro Punzo & Rosalia Castellano & Mirko Buonocore, 2018. "Job Satisfaction in the “Big Four” of Europe: Reasoning Between Feeling and Uncertainty Through CUB Models," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(1), pages 205-236, August.
- Cicia, Gianni & Corduas, Marcella & Del Giudice, Teresa & Piccolo, Domenico, 2010.
"Valuing Consumer Preferences with the CUB Model: A Case Study of Fair Trade Coffee,"
International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 1(01), pages 1-12.
- Cicia, Gianni & Corduas, Marcella & Del Giudice, Teresa & Piccolo, Domenico, 2009. "Valuing Consumer Preferences with the CUB Model: A Case Study of Fairtrade Coffee," 2009 International European Forum, February 15-20, 2009, Innsbruck-Igls, Austria 59209, International European Forum on System Dynamics and Innovation in Food Networks.
- Gerhard Tutz & Micha Schneider & Maria Iannario & Domenico Piccolo, 2017. "Mixture models for ordinal responses to account for uncertainty of choice," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 281-305, June.
- Romina Gambacorta & Maria Iannario, 2012. "Statistical models for measuring job satisfaction," Temi di discussione (Economic working papers) 852, Bank of Italy, Economic Research and International Relations Area.
- Capecchi, Stefania & Amato, Mario & Sodano, Valeria & Verneau, Fabio, 2019. "Understanding beliefs and concerns towards palm oil: Empirical evidence and policy implications," Food Policy, Elsevier, vol. 89(C).
- Shaoting Li & Jiahua Chen, 2023. "Mixture of shifted binomial distributions for rating data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 833-853, October.
- Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
- Simone, Rosaria & Tutz, Gerhard & Iannario, Maria, 2020. "Subjective heterogeneity in response attitude for multivariate ordinal outcomes," Econometrics and Statistics, Elsevier, vol. 14(C), pages 145-158.
- Stefania Capecchi & Marta Meleddu & Manuela Pulina, 2019. "Quality evaluation and preferences of healthcare services: the case of telemedicine in Sardinia," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2339-2351, September.
- Maria Iannario & Anna Clara Monti & Domenico Piccolo, 2016. "Robustness issues for cub models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 731-750, December.
- Maria Iannario & Marica Manisera & Domenico Piccolo & Paola Zuccolotto, 2012. "Sensory analysis in the food industry as a tool for marketing decisions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 303-321, December.
- Maria Iannario & Marica Manisera & Paola Zuccolotto, 2017. "Treatment of “don’t know” responses in the consumers’ perceptions about sustainability in the agri-food sector," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 765-778, March.
- Stefania Capecchi & Maria Iannario, 2016. "Gini heterogeneity index for detecting uncertainty in ordinal data surveys," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 223-232, August.
- Maria Iannario, 2012. "Modelling shelter choices in a class of mixture models for ordinal responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 1-22, March.
- Stefania Capecchi & Maria Iannario & Domenico Piccolo, 2012. "Modelling Job Satisfaction in AlmaLaurea Surveys," Working Papers 56, AlmaLaurea Inter-University Consortium.
- Ryan H. L. Ip & K. Y. K. Wu, 2024. "A mixture distribution for modelling bivariate ordinal data," Statistical Papers, Springer, vol. 65(7), pages 4453-4488, September.
- Arboretti Giancristofaro, Rosa & Bordignon, Paolo, 2015. "Consumer preferences in food packaging: cub models and conjoint analysis," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202707, European Association of Agricultural Economists.
- Manisera, Marica & Zuccolotto, Paola, 2022. "A mixture model for ordinal variables measured on semantic differential scales," Econometrics and Statistics, Elsevier, vol. 22(C), pages 98-123.
- Francesca Iorio & Riccardo Lucchetti & Rosaria Simone, 2024. "Testing distributional assumptions in CUB models for the analysis of rating data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 669-701, September.
- Sasanka Adikari & Norou Diawara, 2024. "Utility in Time Description in Priority Best–Worst Discrete Choice Models: An Empirical Evaluation Using Flynn’s Data," Stats, MDPI, vol. 7(1), pages 1-18, February.
- Stefania Capecchi & Maria Iannario & Rosaria Simone, 2018. "Well-Being and Relational Goods: A Model-Based Approach to Detect Significant Relationships," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 729-750, January.
- Maria Iannario & Domenico Piccolo, 2016. "A comprehensive framework of regression models for ordinal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 233-252, August.
- Stefania Capecchi & Romina Gambacorta & Rosaria Simone & Domenico Piccolo, 2024. "Modelling cognitive response patterns to survey questions using the class of CUB models," Questioni di Economia e Finanza (Occasional Papers) 885, Bank of Italy, Economic Research and International Relations Area.
- Maurizio Carpita & Enrico Ciavolino & Mariangela Nitti, 2019. "The MIMIC–CUB Model for the Prediction of the Economic Public Opinions in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 287-305, November.
- Iannario, Maria & Piccolo, Domenico, 2014. "A theorem on CUB models for rank data," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 27-31.
- Domenico Piccolo & Rosaria Simone, 2019. "Rejoinder to the discussion of “The class of cub models: statistical foundations, inferential issues and empirical evidence”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 477-493, September.