IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i5p1749-1762.html
   My bibliography  Save this item

Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
  2. Karellas, S. & Tzouganatos, N., 2014. "Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 865-882.
  3. Giudici, Federico & Castelletti, Andrea & Garofalo, Elisabetta & Giuliani, Matteo & Maier, Holger R., 2019. "Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid islands," Applied Energy, Elsevier, vol. 250(C), pages 605-616.
  4. Cheung, Brian C. & Carriveau, Rupp & Ting, David S.-K., 2014. "Parameters affecting scalable underwater compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 239-247.
  5. Ruixiong Li & Huanran Wang & Erren Yao & Shuyu Zhang, 2016. "Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC," Energies, MDPI, vol. 10(1), pages 1-19, December.
  6. Chen, Jie & Liu, Wei & Jiang, Deyi & Zhang, Junwei & Ren, Song & Li, Lin & Li, Xiaokang & Shi, Xilin, 2017. "Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China," Energy, Elsevier, vol. 127(C), pages 462-478.
  7. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
  8. Alami, Abdul Hai & Aokal, Kamilia & Abed, Jehad & Alhemyari, Mohammad, 2017. "Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications," Renewable Energy, Elsevier, vol. 106(C), pages 201-211.
  9. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
  10. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
  11. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
  12. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  13. Safaei, Hossein & Keith, David W. & Hugo, Ronald J., 2013. "Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization," Applied Energy, Elsevier, vol. 103(C), pages 165-179.
  14. Manchester, Sebastian C. & Swan, Lukas G. & Groulx, Dominic, 2015. "Regenerative air energy storage for remote wind–diesel micro-grid communities," Applied Energy, Elsevier, vol. 137(C), pages 490-500.
  15. Madlener, Reinhard & Latz, Jochen, 2013. "Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power," Applied Energy, Elsevier, vol. 101(C), pages 299-309.
  16. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
  17. Li, Yongliang & Sciacovelli, Adriano & Peng, Xiaodong & Radcliffe, Jonathan & Ding, Yulong, 2016. "Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas," Applied Energy, Elsevier, vol. 171(C), pages 26-36.
  18. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2014. "Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage," Energy, Elsevier, vol. 77(C), pages 460-477.
  19. Wenyi Liu & Linzhi Liu & Gang Xu & Feifei Liang & Yongping Yang & Weide Zhang & Ying Wu, 2014. "A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China," Energies, MDPI, vol. 7(8), pages 1-23, August.
  20. Ibrahim, H. & Younès, R. & Basbous, T. & Ilinca, A. & Dimitrova, M., 2011. "Optimization of diesel engine performances for a hybrid wind–diesel system with compressed air energy storage," Energy, Elsevier, vol. 36(5), pages 3079-3091.
  21. Brown, T.L. & Atluri, V.P. & Schmiedeler, J.P., 2014. "A low-cost hybrid drivetrain concept based on compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 477-489.
  22. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
  23. Marano, Vincenzo & Rizzo, Gianfranco & Tiano, Francesco Antonio, 2012. "Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage," Applied Energy, Elsevier, vol. 97(C), pages 849-859.
  24. Rabbani, M. & Dincer, I. & Naterer, G.F., 2012. "Thermodynamic assessment of a wind turbine based combined cycle," Energy, Elsevier, vol. 44(1), pages 321-328.
  25. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
  26. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
  27. Proietti, Stefania & Sdringola, Paolo & Castellani, Francesco & Astolfi, Davide & Vuillermoz, Elisa, 2017. "On the contribution of renewable energies for feeding a high altitude Smart Mini Grid," Applied Energy, Elsevier, vol. 185(P2), pages 1694-1701.
  28. Shaw, Dein & Cai, Jyun-Yu & Liu, Chien-Ting, 2012. "Efficiency analysis and controller design of a continuous variable planetary transmission for a CAES wind energy system," Applied Energy, Elsevier, vol. 100(C), pages 118-126.
  29. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
  30. Kim, Hyung-Mok & Rutqvist, Jonny & Ryu, Dong-Woo & Choi, Byung-Hee & Sunwoo, Choon & Song, Won-Kyong, 2012. "Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance," Applied Energy, Elsevier, vol. 92(C), pages 653-667.
  31. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Pavlopoylos, Kosmas & Stamataki, Sofia & Dimitrelou, Irene & Stefanakis, Ioannis & Spanos, Petros, 2012. "Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos," Applied Energy, Elsevier, vol. 97(C), pages 38-48.
  32. Ladenburg, Jacob & Dahlgaard, Jens-Olav, 2012. "Attitudes, threshold levels and cumulative effects of the daily wind-turbine encounters," Applied Energy, Elsevier, vol. 98(C), pages 40-46.
  33. Ho, W.S. & Hashim, H. & Lim, J.S., 2014. "Integrated biomass and solar town concept for a smart eco-village in Iskandar Malaysia (IM)," Renewable Energy, Elsevier, vol. 69(C), pages 190-201.
  34. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
  35. Shang Chen & Ahmad Arabkoohsar & Guodong Chen & Mads Pagh Nielsen, 2022. "Optimization of a Hybrid Energy System with District Heating and Cooling Considering Off-Design Characteristics of Components, an Effort on Optimal Compressed Air Energy Storage Integration," Energies, MDPI, vol. 15(13), pages 1-21, June.
  36. Saad, Y. & Younes, R. & Abboudi, S. & Ilinca, A., 2018. "Hydro-pneumatic storage for wind-diesel electricity generation in remote sites," Applied Energy, Elsevier, vol. 231(C), pages 1159-1178.
  37. Tascikaraoglu, A. & Uzunoglu, M. & Vural, B., 2012. "The assessment of the contribution of short-term wind power predictions to the efficiency of stand-alone hybrid systems," Applied Energy, Elsevier, vol. 94(C), pages 156-165.
  38. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Zeraouli, Y., 2015. "Morocco's strategy for energy security and low-carbon growth," Energy, Elsevier, vol. 84(C), pages 98-105.
  39. Camargos, Tomás P.L. & Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2018. "Experimental study of a PH-CAES system: Proof of concept," Energy, Elsevier, vol. 165(PA), pages 630-638.
  40. Meinert, M. & Melzer, M. & Kamburow, C. & Palacin, R. & Leska, M. & Aschemann, H., 2015. "Benefits of hybridisation of diesel driven rail vehicles: Energy management strategies and life-cycle costs appraisal," Applied Energy, Elsevier, vol. 157(C), pages 897-904.
  41. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
  42. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
  43. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
  44. Arbabzadeh, Maryam & Johnson, Jeremiah X. & De Kleine, Robert & Keoleian, Gregory A., 2015. "Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration," Applied Energy, Elsevier, vol. 146(C), pages 397-408.
  45. Bahadori, Alireza, 2011. "Prediction of compressed air transport properties at elevated pressures and high temperatures using simple method," Applied Energy, Elsevier, vol. 88(4), pages 1434-1440, April.
  46. Erren Yao & Huanran Wang & Long Liu & Guang Xi, 2014. "A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System," Energies, MDPI, vol. 8(1), pages 1-18, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.