IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i5p1749-1762.html
   My bibliography  Save this article

Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas

Author

Listed:
  • Ibrahim, H.
  • Younès, R.
  • Ilinca, A.
  • Dimitrova, M.
  • Perron, J.

Abstract

Remote areas around the world predominantly rely on diesel-powered generators for their electricity supply, a relatively expensive and inefficient technology that is responsible for the emission of 1.2Â million tons of greenhouse gas (GHG) annually, only in Canada [1]. Wind-diesel hybrid systems (WDS) with various penetration rates have been experimented to reduce diesel consumption of the generators. After having experimented wind-diesel hybrid systems (WDS) that used various penetration rates, we turned our focus to that the re-engineering of existing diesel power plants can be achieved most efficiently, in terms of cost and diesel consumption, through the introduction of high penetration wind systems combined with compressed air energy storage (CAES). This article compares the available technical alternatives to supercharge the diesel that was used in this high penetration wind-diesel system with compressed air storage (WDCAS), in order to identify the one that optimizes its cost and performances. The technical characteristics and performances of the best candidate technology are subsequently assessed at different working regimes in order to evaluate the varying effects on the system. Finally, a specific WDCAS system with diesel engine downsizing is explored. This proposed design, that requires the repowering of existing facilities, leads to heightened diesel power output, increased engine lifetime and efficiency and to the reduction of fuel consumption and GHG emissions, in addition to savings on maintenance and replacement cost.

Suggested Citation

  • Ibrahim, H. & Younès, R. & Ilinca, A. & Dimitrova, M. & Perron, J., 2010. "Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas," Applied Energy, Elsevier, vol. 87(5), pages 1749-1762, May.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1749-1762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00457-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weis, Timothy M. & Ilinca, Adrian & Pinard, Jean-Paul, 2008. "Stakeholders' perspectives on barriers to remote wind-diesel power plants in Canada," Energy Policy, Elsevier, vol. 36(5), pages 1611-1621, May.
    2. Bowen, A.J & Cowie, M & Zakay, N, 2001. "The performance of a remote wind–diesel power system," Renewable Energy, Elsevier, vol. 22(4), pages 429-445.
    3. Weis, Timothy M. & Ilinca, Adrian, 2008. "The utility of energy storage to improve the economics of wind–diesel power plants in Canada," Renewable Energy, Elsevier, vol. 33(7), pages 1544-1557.
    4. Kaldellis, J.K. & Kondili, E. & Filios, A., 2006. "Sizing a hybrid wind-diesel stand-alone system on the basis of minimum long-term electricity production cost," Applied Energy, Elsevier, vol. 83(12), pages 1384-1403, December.
    5. Khan, M.J. & Iqbal, M.T., 2009. "Analysis of a small wind-hydrogen stand-alone hybrid energy system," Applied Energy, Elsevier, vol. 86(11), pages 2429-2442, November.
    6. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim, H. & Younès, R. & Basbous, T. & Ilinca, A. & Dimitrova, M., 2011. "Optimization of diesel engine performances for a hybrid wind–diesel system with compressed air energy storage," Energy, Elsevier, vol. 36(5), pages 3079-3091.
    2. Manchester, Sebastian C. & Swan, Lukas G. & Groulx, Dominic, 2015. "Regenerative air energy storage for remote wind–diesel micro-grid communities," Applied Energy, Elsevier, vol. 137(C), pages 490-500.
    3. Karanasios, Konstantinos & Parker, Paul, 2018. "Tracking the transition to renewable electricity in remote indigenous communities in Canada," Energy Policy, Elsevier, vol. 118(C), pages 169-181.
    4. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2012. "A new hybrid pneumatic combustion engine to improve fuel consumption of wind–Diesel power system for non-interconnected areas," Applied Energy, Elsevier, vol. 96(C), pages 459-476.
    5. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    6. Suomalainen, K. & Silva, C. & Ferrão, P. & Connors, S., 2013. "Wind power design in isolated energy systems: Impacts of daily wind patterns," Applied Energy, Elsevier, vol. 101(C), pages 533-540.
    7. Konstantinos Karanasios & Paul Parker, 2018. "Explaining the Diffusion of Renewable Electricity Technologies in Canadian Remote Indigenous Communities through the Technological Innovation System Approach," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    8. Froese, Sarah & Kunz, Nadja C. & Ramana, M.V., 2020. "Too small to be viable? The potential market for small modular reactors in mining and remote communities in Canada," Energy Policy, Elsevier, vol. 144(C).
    9. Bhattarai, Prasid Ram & Thompson, Shirley, 2016. "Optimizing an off-grid electrical system in Brochet, Manitoba, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 709-719.
    10. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Optimal management of compressed air energy storage in a hybrid wind-pneumatic-diesel system for remote area's power generation," Energy, Elsevier, vol. 84(C), pages 267-278.
    11. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    12. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Shuang Rong & Weixing Li & Zhimin Li & Yong Sun & Taiyi Zheng, 2015. "Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method," Energies, MDPI, vol. 9(1), pages 1-21, December.
    14. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    15. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    16. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    17. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    18. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    19. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    20. Kroniger, Daniel & Madlener, Reinhard, 2014. "Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility," Applied Energy, Elsevier, vol. 136(C), pages 931-946.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1749-1762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.