IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v181y2016icp495-513.html
   My bibliography  Save this item

A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Ning & Jiang, Junxian & Gao, Bo & Liu, Xiaokai, 2020. "DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump," Renewable Energy, Elsevier, vol. 153(C), pages 193-204.
  2. Wang, Like & Feng, Jianjun & Lu, Jinling & Zhu, Guojun & Wang, Wei, 2024. "Novel bionic wave-shaped tip clearance toward improving hydrofoil energy performance and suppressing tip leakage vortex," Energy, Elsevier, vol. 290(C).
  3. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  4. Liu, Mingzhe & Ooka, Ryozo & Choi, Wonjun & Ikeda, Shintaro, 2019. "Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  5. Zhang, Liwen & Wang, Xin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2023. "Optimization of a centrifugal pump to improve hydraulic efficiency and reduce hydro-induced vibration," Energy, Elsevier, vol. 268(C).
  6. Yuan, Zhiyi & Zhang, Yongxue & Zhou, Wenbo & Zhang, Jinya & Zhu, Jianjun, 2024. "Optimization of a centrifugal pump with high efficiency and low noise based on fast prediction method and vortex control," Energy, Elsevier, vol. 289(C).
  7. Ge Zhao & Wei Li & Jinsong Zhu, 2019. "A Numerical Investigation of the Influence of Geometric Parameters on the Performance of a Multi-Channel Confluent Water Supply," Energies, MDPI, vol. 12(22), pages 1-21, November.
  8. Bozorgasareh, Hamidreza & Khalesi, Javad & Jafari, Mohammad & Gazori, Heshmat Olah, 2021. "Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 163(C), pages 635-648.
  9. Li, Ximei & Gao, Jianmin & Chen, Bingyuan & You, Shi & Zheng, Yi & Du, Qian & Qin, Yukun, 2023. "Multi-objective optimization of district heating systems with turbine-driving fans and pumps considering economic, exergic, and environmental aspects," Energy, Elsevier, vol. 277(C).
  10. Levon Gevorkov & José Luis Domínguez-García & Anton Rassõlkin & Toomas Vaimann, 2022. "Comparative Simulation Study of Pump System Efficiency Driven by Induction and Synchronous Reluctance Motors," Energies, MDPI, vol. 15(11), pages 1-12, June.
  11. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, vol. 11(11), pages 1-17, October.
  12. Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii & Safarbek Oshurbekov & Dmitry Golovanov, 2020. "Life Cycle Energy Cost Assessment for Pump Units with Various Types of Line-Start Operating Motors Including Cable Losses," Energies, MDPI, vol. 13(14), pages 1-15, July.
  13. Torregrossa, Dario & Hansen, Joachim & Hernández-Sancho, Francesc & Cornelissen, Alex & Schutz, Georges & Leopold, Ulrich, 2017. "A data-driven methodology to support pump performance analysis and energy efficiency optimization in Waste Water Treatment Plants," Applied Energy, Elsevier, vol. 208(C), pages 1430-1440.
  14. Fernández Oro, J.M. & Barrio Perotti, R. & Galdo Vega, M. & González, J., 2023. "Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions," Energy, Elsevier, vol. 278(PA).
  15. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
  16. Ma, Jiaze & Wang, Yufei & Feng, Xiao, 2017. "Energy recovery in cooling water system by hydro turbines," Energy, Elsevier, vol. 139(C), pages 329-340.
  17. Zhang, Ning & Jiang, Junxian & Gao, Bo & Liu, Xiaokai & Ni, Dan, 2020. "Numerical analysis of the vortical structure and its unsteady evolution of a centrifugal pump," Renewable Energy, Elsevier, vol. 155(C), pages 748-760.
  18. Ning Zhang & Delin Li & Junxian Jiang & Bo Gao & Dan Ni & Anthony Akurugo Alubokin & Wenbin Zhang, 2023. "Experimental Investigation on Velocity Fluctuation in a Vaned Diffuser Centrifugal Pump Measured by Laser Doppler Anemometry," Energies, MDPI, vol. 16(7), pages 1-17, April.
  19. Zhiqiang Yin & Lin Shi & Junru Luo & Shoukun Xu & Yang Yuan & Xinxin Tan & Jiaqun Zhu, 2023. "Pump Feature Construction and Electrical Energy Consumption Prediction Based on Feature Engineering and LightGBM Algorithm," Sustainability, MDPI, vol. 15(1), pages 1-17, January.
  20. Gan, Xingcheng & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Yin, Tingyun, 2022. "Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump," Energy, Elsevier, vol. 240(C).
  21. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
  22. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
  23. Johnson, Hilary A. & Simon, Kevin P. & Slocum, Alexander H., 2021. "Data analytics and pump control in a wastewater treatment plant," Applied Energy, Elsevier, vol. 299(C).
  24. Daqing Zhou & Huixiang Chen & Yuan Zheng & Kan Kan & An Yu & Maxime Binama, 2019. "Development and Numerical Performance Analysis of a Pump Directly Driven by a Hydrokinetic Turbine," Energies, MDPI, vol. 12(22), pages 1-20, November.
  25. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
  26. Rogger José Andrade-Cedeno & Jesús Alberto Pérez-Rodríguez & Carlos David Amaya-Jaramillo & Ciaddy Gina Rodríguez-Borges & Yolanda Eugenia Llosas-Albuerne & José David Barros-Enríquez, 2022. "Numerical Study of Constant Pressure Systems with Variable Speed Electric Pumps," Energies, MDPI, vol. 15(5), pages 1-22, March.
  27. Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Welitom Ttatom Pereira da Silva & Ildo Luis Sauer & Hédio Tatizawa, 2022. "Perspectives on the Advancement of Industry 4.0 Technologies Applied to Water Pumping Systems: Trends in Building Pumps," Energies, MDPI, vol. 15(9), pages 1-17, May.
  28. Michał Napierała, 2022. "A Study on Improving Economy Efficiency of Pumping Stations Based on Tariff Changes," Energies, MDPI, vol. 15(3), pages 1-17, January.
  29. V.K. Arun Shankar & Umashankar Subramaniam & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Frede Blaabjerg & S. Paramasivam, 2019. "Experimental Investigation of Power Signatures for Cavitation and Water Hammer in an Industrial Parallel Pumping System," Energies, MDPI, vol. 12(7), pages 1-14, April.
  30. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
  31. Wang, Chuan & Shi, Weidong & Wang, Xikun & Jiang, Xiaoping & Yang, Yang & Li, Wei & Zhou, Ling, 2017. "Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics," Applied Energy, Elsevier, vol. 187(C), pages 10-26.
  32. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
  33. Hyeonchang Jeon & Daeil Hyun & Hyuntae Lee & Seongjin Son & Jaeyoung Han, 2024. "Optimization of Blades and Impellers for Electric Vehicle Centrifugal Pumps via Numerical Analysis," Energies, MDPI, vol. 17(4), pages 1-16, February.
  34. Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Ildo Luis Sauer & Hédio Tatizawa, 2021. "Energy Efficiency Indicators for Water Pumping Systems in Multifamily Buildings," Energies, MDPI, vol. 14(21), pages 1-13, November.
  35. Hieninger, Thomas & Schmidt-Vollus, Ronald & Schlücker, Eberhard, 2021. "Improving energy efficiency of individual centrifugal pump systems using model-free and on-line optimization methods," Applied Energy, Elsevier, vol. 304(C).
  36. Ma, Jiaze & Wang, Yufei & Feng, Xiao, 2018. "Optimization of multi-plants cooling water system," Energy, Elsevier, vol. 150(C), pages 797-815.
  37. Olszewski, Pawel & Arafeh, Jamal, 2018. "Parametric analysis of pumping station with parallel-configured centrifugal pumps towards self-learning applications," Applied Energy, Elsevier, vol. 231(C), pages 1146-1158.
  38. Diaz, Cesar & Ruiz, Fredy & Patino, Diego, 2017. "Modeling and control of water booster pressure systems as flexible loads for demand response," Applied Energy, Elsevier, vol. 204(C), pages 106-116.
  39. Ning Zhang & Delin Li & Bo Gao & Dan Ni & Zhong Li, 2022. "Unsteady Pressure Pulsations in Pumps—A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
  40. Xu, Wei & Chen, Genglin & Shi, Huijin & Zhang, Pengcheng & Chen, Xuemei, 2023. "Research on operational characteristics of coal power centrifugal fans at off-design working conditions based on flap-angle adjustment," Energy, Elsevier, vol. 284(C).
  41. Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  42. Victor Goman & Vladimir Prakht & Vadim Kazakbaev & Vladimir Dmitrievskii, 2021. "Comparative Study of Energy Consumption and CO 2 Emissions of Variable-Speed Electric Drives with Induction and Synchronous Reluctance Motors in Pump Units," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
  43. Xuetao Wang & Qianchuan Zhao & Yifan Wang, 2020. "A Distributed Optimization Method for Energy Saving of Parallel-Connected Pumps in HVAC Systems," Energies, MDPI, vol. 13(15), pages 1-24, July.
  44. Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2021. "Improving Reliability and Energy Efficiency of Three Parallel Pumps by Selecting Trade-Off Operating Points," Mathematics, MDPI, vol. 9(11), pages 1-19, June.
  45. Liu, Jiahong & Wang, Jia & Ding, Xiangyi & Shao, Weiwei & Mei, Chao & Li, Zejin & Wang, Kaibo, 2020. "Assessing the mitigation of greenhouse gas emissions from a green infrastructure-based urban drainage system," Applied Energy, Elsevier, vol. 278(C).
  46. Li, Wei & Huang, Yuxin & Ji, Leilei & Ma, Lingling & Agarwal, Ramesh K. & Awais, Muhammad, 2023. "Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump," Energy, Elsevier, vol. 271(C).
  47. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
  48. Peng Wang & Xingqi Luo & Jinling Lu & Qiyao Xue & Jiawei Gao & Senlin Chen, 2022. "Energy and Economic Analysis of Power Generation Using Residual Pressure of a Circulating Cooling Water System," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.