IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223012148.html
   My bibliography  Save this article

Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions

Author

Listed:
  • Fernández Oro, J.M.
  • Barrio Perotti, R.
  • Galdo Vega, M.
  • González, J.

Abstract

The research on the flow in centrifugal pumps is quite broad and covers most of the relevant issues. However, most of the studies are focused on the steady behaviors and less literature is available for the dynamic interactions. Unsteady mechanisms for energy transfer and sources of impeller-tongue interaction can be identified in centrifugal pumps using the deterministic decomposition of the flow. Probably, the most important effect to be considered is the radial gap or spacing between the impeller exit diameter and the volute tongue radial location. The numerical dataset of a full 3D URANS model in a centrifugal pump has been employed to study in detail the effect of the radial gap size in the unsteady fluctuations of the velocity field within the pump, using the deterministic analysis as the main novelty. The numerical model developed by the authors has been already tested towards the prediction of the unsteady pressure field inside the volute, at the impeller exit. The new results presented here allow to see the impact of both geometrical and operating parameters on the flow discharge and momentum exchange. In particular, four different radial gaps (23.2%, 17.0%, 11.4% and 8.8% of the impeller diameter) operated at five different flow rates (from 20% to 160% of the nominal rate) have been numerically resolved and analyzed. The deterministic analysis reveals the major impact of the radial clearance on the blade-to-blade flow patterns within the impeller, especially at low flow rates. Unsteady viscous interaction induces radial velocity fluctuations that can be as high as a 40% of the time-averaged value. Moreover, this non-linear term can be perceived up to 1.5 times higher in the case of radial gap reductions from 23.2% to 8.8% of the impeller diameter. There is not a prevailing effect of the radial gap on that velocity component, and a pure temporal term dependence is found. On the contrary, the influence of the gap on the tangential component, responsible for the unsteady evolution of the impeller torque, is found to be the key parameter. Therefore, the fluctuations of the flow blockage are found to be the consequence of the impeller flow patterns and the fluctuations of the torque are to be assigned to the radial gap influence. All the post-processing routines have provided a precise picture of all the classic unsteady mechanisms involved: jet-wake pattern interaction, acoustic wave propagations and recirculating cells at off-design conditions. Hence, deterministic analysis is a useful tool to analyze the flow inside centrifugal pumps and it envisages the introduction of deterministic flow variables as objective functions for design optimization algorithms.

Suggested Citation

  • Fernández Oro, J.M. & Barrio Perotti, R. & Galdo Vega, M. & González, J., 2023. "Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012148
    DOI: 10.1016/j.energy.2023.127820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Chengshuo & Pu, Kexin & Li, Changqin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2022. "Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump," Energy, Elsevier, vol. 246(C).
    2. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    3. Lin, Yanpi & Li, Xiaojun & Zhu, Zuchao & Wang, Xunming & Lin, Tong & Cao, Haibin, 2022. "An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge," Energy, Elsevier, vol. 246(C).
    4. Pugliese, Francesco & De Paola, Francesco & Fontana, Nicola & Giugni, Maurizio & Marini, Gustavo, 2016. "Experimental characterization of two Pumps As Turbines for hydropower generation," Renewable Energy, Elsevier, vol. 99(C), pages 180-187.
    5. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    6. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    7. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    8. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    2. Hyeonchang Jeon & Daeil Hyun & Hyuntae Lee & Seongjin Son & Jaeyoung Han, 2024. "Optimization of Blades and Impellers for Electric Vehicle Centrifugal Pumps via Numerical Analysis," Energies, MDPI, vol. 17(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    2. Zhang, Liwen & Wang, Xin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2023. "Optimization of a centrifugal pump to improve hydraulic efficiency and reduce hydro-induced vibration," Energy, Elsevier, vol. 268(C).
    3. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    4. Yuan, Zhiyi & Zhang, Yongxue & Zhou, Wenbo & Zhang, Jinya & Zhu, Jianjun, 2024. "Optimization of a centrifugal pump with high efficiency and low noise based on fast prediction method and vortex control," Energy, Elsevier, vol. 289(C).
    5. Tong Lin & Jian Li & Baofei Xie & Jianrong Zhang & Zuchao Zhu & Hui Yang & Xiaoming Wen, 2022. "Vortex-Pressure Fluctuation Interaction in the Outlet Duct of Centrifugal Pump as Turbines (PATs)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    6. He, Jiawei & Si, Qiaorui & Sun, Wentao & Liu, Jinfeng & Miao, Senchun & Wang, Xiaohui & Wang, Peng & Wang, Chenguang, 2023. "Study on the energy loss characteristics of ultra-low specific speed PAT under different short blade lengths based on entropy production method," Energy, Elsevier, vol. 283(C).
    7. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    8. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    9. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
    10. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    11. Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Ildo Luis Sauer & Hédio Tatizawa, 2021. "Energy Efficiency Indicators for Water Pumping Systems in Multifamily Buildings," Energies, MDPI, vol. 14(21), pages 1-13, November.
    12. Sun, Longyue & Pan, Qiang & Zhang, Desheng & Zhao, Ruijie & Esch, B.P.M.(Bart) van, 2022. "Numerical study of the energy loss in the bulb tubular pump system focusing on the off-design conditions based on combined energy analysis methods," Energy, Elsevier, vol. 258(C).
    13. Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Li, Wei & Huang, Yuxin & Ji, Leilei & Ma, Lingling & Agarwal, Ramesh K. & Awais, Muhammad, 2023. "Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump," Energy, Elsevier, vol. 271(C).
    15. Wang, Like & Feng, Jianjun & Lu, Jinling & Zhu, Guojun & Wang, Wei, 2024. "Novel bionic wave-shaped tip clearance toward improving hydrofoil energy performance and suppressing tip leakage vortex," Energy, Elsevier, vol. 290(C).
    16. Zhang, Ning & Jiang, Junxian & Gao, Bo & Liu, Xiaokai, 2020. "DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump," Renewable Energy, Elsevier, vol. 153(C), pages 193-204.
    17. Olszewski, Pawel & Arafeh, Jamal, 2018. "Parametric analysis of pumping station with parallel-configured centrifugal pumps towards self-learning applications," Applied Energy, Elsevier, vol. 231(C), pages 1146-1158.
    18. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    19. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    20. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.